In Situ Observation of Thermal Stress in Nano-Size Thin Aluminum Films


Article Preview

In-situ observation of thermal stress in thin films deposited on a silicon substrate was made by synchrotron radiations. The specimens prepared in this experiment were nano-size thin aluminum films with SiO2 passivation. The thickness of the films was 10 nm, 20 nm and 50 nm. Residual stress in the as-deposited state was tensile. Compressive stress was developed in the heating cycle up to 300 oC and tensile stresses developed in the cooling cycle. The thermal stresses in the 50 nm film showed non-linear behavior in the first heating cycle from the room temperature to 300 oC. However, they linearly behaved in the first cooling cycle and the second thermal cycle. On the other hand, the thermal stresses in the 10 nm film behaved almost linearly without any hysteresis in the first and the second thermal cycles. The mechanism of thermal stress behavior of thin films is discussed.



Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu




H. Takao et al., "In Situ Observation of Thermal Stress in Nano-Size Thin Aluminum Films", Materials Science Forum, Vols. 490-491, pp. 577-582, 2005

Online since:

July 2005




[1] International Technology Roadmap for Semiconductor, International SEMATECH (1999).

[2] P. R. Besser, M. C. Madden and P. A. Flinn, J. Appl. Phys. , 72 (1992) 3792.

[3] T. N. Marieb, E. D. Abratowski, J. C. Bravman, AIP Conference Proceedings 305, Austin, TX (1993), pp.1-14, AIP Press.

[4] P. -C. Wang, G. S. Cargill III, I. C. Noyan and C. -K. Hu, Appl. Phys. Lett., 72 (1998) 1296.

[5] P. S. Ho, I. -S. Yeo, and S. G. H. Anderson, AIP Conference Proceedings 305, Austin, TX (1993), pp.62-99, AIP Press.

[6] T. Hanabusa, Materials Science Research International, 5 (1999) 63.

[7] K. Kusaka, T.Hanabusa, M. Nishida and F. Inoko, Thin Solid Films, 290-291 (1996) 248.

[8] K. Tanaka, Y. Akiniwa, K. Inoue and H. Ohta, JSME Inter. J., 41 (1999) 290.

[9] P. M. Sutton, Phys. Rev., 91 (1953) 816.

[10] G. N. Kamm and G. A. Alers, J. Appl. Phys., 35 (1964) 322.

[11] J. Vallin, M. Mongy, K. Salama and O. Beckman, J. Appl. Phys., 35 (1964) 1822.

[12] D. Gerlich and E. S. Fisher, J. Phys. Chem. Solids, 30 (1969) 1197.

[13] J. F. Thomas, Phys. Rev., 175 (1968) 955.

[14] T. Hanabusa, K. Kusaka, M. Nishida and F. Inoko, The 5 th Int. Conf. On Residual Stresses, Vol. 2, Ed. By T. Ericsson, M. Oden and A. Andersson, (1997) 854.

[15] T. Hanabusa and M. Nishida, Mat. Sci.Res.Intl., Special Technical Publication, Vol. 1, (2001) 285.

[16] D. Weeks, J. Dunders and M. Stippes, Int. J. Eng. Sci., 6 (1968) 365.

Fetching data from Crossref.
This may take some time to load.