XRD Stress Analysis in a TiAl Based Intermetallic Multicrystal

Abstract:

Article Preview

Under specific manufacturing processes and heat treatments, the gamma titanium Aluminide Ti- 47Al-2Cr-2Nb presents a nearly lamellar microstructure with coarse lamellar grains (with alternating g and a2 lamellae) and dispersed small g grains. The obtained microstructure gives a relatively coarse grain size (approximately 0.4 mm x 3 mm). Residual stresses can then be generated between g and a2 lamellae inside the lamellar grain and also between different grains because of the lattice mismatch between tetragonal structure of g phase and hexagonal structure of a2 phase. A specific single crystalline XRD method is applied on these two non-cubic phases to determine the local residual stresses in two grains on each side of a grain boundary.

Info:

Periodical:

Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu

Pages:

684-689

Citation:

W. Seiler et al., "XRD Stress Analysis in a TiAl Based Intermetallic Multicrystal", Materials Science Forum, Vols. 490-491, pp. 684-689, 2005

Online since:

July 2005

Export:

Price:

$38.00

[1] S. Naka, M. Thomas, C. Sanchez, T. Khan, Structural Intermetallics, ed. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, (Warrendale, PA: The Minerals, Metals & Materials Society, 1997), 313-322.

[2] M. Thomas and S. Naka, Effect of texture on the behaviour of constant strain rate deformations and creep of Ti-47Al-2Nb-2Cr alloy, Second International Symposium on Gamma Titanium Aluminides - 128th TMS annual meeting (San Diego, Feb. 1999), p.633.

DOI: https://doi.org/10.1002/3527607285.ch43

[3] Zghal Slim, « Contribution à l'étude de la microstructure et de la déformation plastique des alliages TiAl lamellaires », Ph. D Thesis, University Toulouse, (1997).

[4] L. Henry « Détermination des contraintes résiduelles dans un alliage biphasé à base de TiAl », master degree report ENSAM (2003).

[5] G. Hoel « Contribution au développement d'une méthode d'analyse des contraintes résiduelles dans un monocristal de symétrie quelconque » master degree report ENSAM (2003).

[6] B. Ortner « The choice of lattice planes in x-ray strain measurements of single crystals » Adv. X-ray Anal., 29, 113-118, (1986).

[7] Patterson « International tables for X-ray crystallography », Vol. 2, international union of crystallography, Ed. The Kynoch Kress, Birmingham, (1967).

[8] C. L. Fu, J. Zou and M. H. Yoo « Elastic constants and planar fault energies of Ti3Al, and interfaiciial energies at the Ti3Al/TiAl interface by first-principles calculations » Scripta Mettallurgica et Materialia, Vol. 33, No. 6, pp.885-891, (1995).

DOI: https://doi.org/10.1016/0956-716x(95)00313-k

[9] Y. He, R. B. Schwarz, T. Darling, M. Hundley, S. H. Whang, Z. M. Wang « Elastic constants and thermal expansion of single crystal γ-TiAl from 300 to 750 K 1 », Material Science and Engineering A239-240, pp; 157-163, (1997).

DOI: https://doi.org/10.1016/s0921-5093(97)00575-3

[10] P. M. Hazzledine, B. K. Kad, H. L. Fraser and D. M. Dimiduk, « Internal stresses in TiAl based lamellar composites », Mat. Res. Soc. Proc., Vol. 273, pp; 81-86, (1992).

DOI: https://doi.org/10.1557/proc-273-81