Determination of Residual Stresses after Tensile Tests and Deep Drawing of Unstable Austenitic Steel


Article Preview

The main objective of this work is to contribute to the study of the 301LN unstable austenitic stainless steel by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. In the first part, kinetics of martensitic transformation are determined for uniaxial loading. Tensile tests are performed at different pre-strains at room temperature for two different strain rates. The austenite/martensite content is measured by X-ray diffraction and is coupled with the determination of residual stresses distribution. In addition, to establish a relation between the complex loading path effect and the residual stresses state, deep drawing are done for different drawing ratios for two different temperatures. Macroscopic tangential residual stresses are determined by the separation technique. It appears that the residual stresses increase with increasing drawing ratios and the maximum value is located at middle height of the cup.



Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu




M. R. Berrahmoune et al., "Determination of Residual Stresses after Tensile Tests and Deep Drawing of Unstable Austenitic Steel", Materials Science Forum, Vols. 490-491, pp. 690-695, 2005

Online since:

July 2005




[1] H.C. Fiedler: Trans. ASM Vol. 47 (1955), p.267.

[2] G.H. Eichelman, T.C. Hull: Trans. Amer. Soc. Met Vol. 45 (1953), p.77.

[3] T. Angel: J. Iron and Steel Inst Vol. 177 (1954), p.165.

[4] G. Chappuis, A. Najafi-Zadeh: Mat. Res. Soc. Symp. Proc Vol. 21 (1984), p.699.

[5] R. Langeborg: Acta. Met Vol. 12 (1964), p.823.

[6] A.A. Lebedev, V. Kosarchuk: Int. Jour. Plas Vol. 16 (1999), pp.749-767.

[7] G.B. Olson, M. Cohen: Met. Trans Vol. 6A (1975), p.791.

[8] R.P. Reed: Mater. Conf. 1982 Japan (1982), pp.41-67.

[9] I. Tamura: Metal. Sci Vol. 16 (1982), p.245.

[10] Y. Yuying, L. Chunfeng: Jour. Mater. Proc. Tech Vol. 30 (1992), p.167.

[11] H. Sumitomo: Adva. Tech. Plast Vol. 2 (1979), p.1289.

[12] I.B. Timokhina: Proc. Int. Conf. TRIP. Steels Vol. 1 (2002), p.153.

[13] M. Cherkaoui, M. Berveiller: Int.J. Plast Vol. 16(2000), p.1215.

[14] E. Macherauch, P. Muller: Rev. Appl. Phys Vol. 13 (1961), pp.305-312.

[15] M.S. Ragab, H.Z. Orban: J. Mat. Proc. Tech Vol. 99 (2000), p.55.

[16] K. Lange, L. Bruckner: Trans. NAMRI/SME. (1990), pp.71-75.

[17] M. Weiergraber, A. Graber: Bleche. Rhor. Profile Vol. 32 (1985), p.80.