Co-Precipitation Processing of Nanosized (Y,Gd)2O3: Eu Powder and Its Enhanced X-Ray Excited Luminescence


Article Preview

Preparation of nanosized (Y,Gd)2O3:Eu powders by co-precipitation processing is reported. Phase transformation during calcination was studied by means of DTA-TG FT-IR, SEM and XRD in detail. It was found that the morphologies and X-ray excited luminescence of (Y,Gd)2O3:Eu powders were greatly influenced by the precipitants used. The (Y,Gd)2O3:Eu powder resulted from the complex precipitants of NH3•H2O and NH4HCO3 possessed best microstructural features with grain size of about 30nm and specific surface area of 38m2/g after being calcined at 8500C for 2hr, showing a much finer grain and less agglomeration than those from other two precipitation processing. It was demonstrated that nanosized (Y,Gd)2O3:Eu powder from complex precipitant exhibited much higher luminescence intensity at 611nm under excitation of X-ray (70Kev). which might be attributed to less degree of agglomeration among primary grains, decreasing the probability of non-radiation relaxation.



Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels




Y. Shi et al., "Co-Precipitation Processing of Nanosized (Y,Gd)2O3: Eu Powder and Its Enhanced X-Ray Excited Luminescence ", Materials Science Forum, Vols. 492-493, pp. 101-108, 2005

Online since:

August 2005




[1] G. Blasse and B.C. Grabmaier: Luminescent Materials (Springer-Verlag, Berlin, 1994).

[2] C. Greskovich and S. Duclos: Annu. Rev. Mater. Sci. Vol. 27 (1997), p.69.

[3] A. Konrad, U. Herr, R. Tidecks, F. Kummer and K. Samwer: J. Appl. Phys. Vol. 90 (2001), p.3516.

[4] H. Peng, H. Song, B. Chen, S. Lu and S. Huang: Chem. Phys. Lett. Vol. 370 (2003), p.485.

[5] D. Sordelet and M. Akinc: J. Colloid Interface Sci. Vol. 122 (1988), p.47.

[6] A. Dupont, C. Parent, B. Garrec and J.M. Heintz: J. Solid State Chem. Vol. 171 (2003), p.152.

[7] Y. C. Kang, H. S. Roh and S. B. Park: J. Am. Ceram. Soc. Vol. 84 (2001), p.447.

[8] H. Huang, G. Xu, W. S. Chin, L.M. Gan and C. H. Chew: Nanotechnology Vol. 13 (2002), p.318.

[9] Y. Tao, G. Zhao, W. Zhang and S. Xia: Mater. Res. Bull. Vol. 32 (1997), p.501.

[10] D. K. Williams, H. Yuan and B. M. Tissue: J. Lumin. Vol. 297 (1999), p.83.

[11] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini and G. Fagherazzi: J. Mater. Chem. Vol. 12 (2002), p.742.


[12] N. Saito, S. Matsuda and T. Ikegami: J. Am. Ceram. Soc. Vol. 81(1998), p. (2023).

[13] T. Ikegami, J. Li and T. Mori: J. Am. Ceram. Soc. Vol. 85 (2002), p.1725.

[14] G. Wakefield, H. Keron, P.J. Dobson and J. L. Hutchison: J. Colloid Interface Sci. Vol. 215 (1999), p.179.

[15] M. Buijs, A. Meyerink and G. Blasse: J. Lumin. Vol. 9 (1987), p.37.

[16] P.K. Sharma, M.H. Jilavi, R. Nass and H. Schmidt, J. Lumin., Vol. 82(1999), p.187.

[17] M. Ko, J. C. Park, D.K. Kim and S.H. Byeon: J. Lumin. Vol. 215(2003), p.104.

Fetching data from Crossref.
This may take some time to load.