Electrically Conductive and Wear Resistant Si3N4-Based Composites with TiC0.5N0.5 Particles for Electrical Discharge Machining

Abstract:

Article Preview

Electrically conductive and wear resistant Si3N4-based composites were developed in order to facilitate electrical discharge machining (EDM). The microstructural and mechanical properties of Si3N4-based composites with different amounts of TiC0.5N0.5, fabricated by hot pressing at 1650°C for 1 hour, are investigated and evaluated. The hardness of the micron-sized TiC0.5N0.5 powder based composites increased with increasing TiC0.5N0.5 content from 20 up to 40 vol. %, whereas the bending strength decreased. The fracture toughness reached a maximum at 30 vol. % TiC0.5N0.5 and exhibits a strong anisotropy with respect to the hot-pressing direction. The EDM behaviour of the composites is strongly influenced by the TiC0.5N0.5 content. The composites with a higher TiC0.5N0.5 content have a lower material removal rate but a better surface quality.

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels

Pages:

27-32

Citation:

D. Jiang et al., "Electrically Conductive and Wear Resistant Si3N4-Based Composites with TiC0.5N0.5 Particles for Electrical Discharge Machining ", Materials Science Forum, Vols. 492-493, pp. 27-32, 2005

Online since:

August 2005

Export:

Price:

$38.00

[1] M. Herrmann, C. Schubert, W. Hermel, E. Meiβner and G. Ziegler: CFI/Ber. DKG Vol. 73 (7-8) (1996), p.434.

[2] T. Ekström: J. Eur. Ceram. Soc. Vol. 13 (1994), p.551.

[3] G. Hillinger, V. and Hlavacek: J. Am. Ceram. Soc. Vol. 78 (1995), p.495.

[4] F. Hong, R. J. Lumby and M. H. Lewis: Vol. 11 (1993), p.237.

[5] A. Bellosi, S. Guicciardi and A. Tampieri: J. Eur. Ceram. Soc. Vol. 9 (1992), p.83.

[6] F. Deschaux-Beaume, T. Cutard, N. Frety and C. Levaillant: J. Am. Ceram. Soc. Vol. 85 (2002), p.1860.

[7] J. L. Huang, F. C. Chou and H. H. Lu: J. Mater. Res. Vol. 12 (1997), p.2357.

[8] H. J. Choi, K. S. Cho and J. G. Lee: J. Am. Ceram. Soc. Vol. 80 (1997), p.2681.

[9] Y. G. Gogotsi and G. Grathwohl: J. Mater. Sci. Vol. 28 (1993), p.4279.

[10] N. Uchida and M. Koizumi: J. Am. Ceram. Soc. Vol. 68 (1985), p. C38.

[11] J. L Huang, H. L. Chiu and M. T. Lee: J. Am. Ceram. Soc. Vol. 77 (1994), p.705.

[12] Y. Chih-Hung, and H. Min-Hsiung: J. Am. Ceram. Soc. Vol. 78 (1995), p.2395.

[13] S. T. Buljan and S. F. Wayne: Adv. Cer. Mater. Vol. 2 (1987), p.813.

[14] M. Herrmann, B. Balzer, C. Schubert and W. Hermel: J. Eur. Ceram. Soc. Vol. 12 (1993), p.287.

[15] J. T. Li, W. S. Liu, Y. L. Xia and C. C. Ge: J. Mater. Res. Vol. 11 (1996), p.2968.

[16] G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

[17] ASTM C 1259-94: Standard test method for dynamic Young's modulus, shear modulus, and Poisson's ratio for advanced ceramics by impulse excitation of vibration (ASTM, May 1994).

DOI: https://doi.org/10.1520/c1259

[18] B. C. Bae, D. S. Park, Y. W. Kim, B. D. Han, H. D. Kim and C. Park: J. Am. Ceram. Soc. Vol. 86 (2003), p.1008.

[19] R.J. Xie, M. Mitomo, W. Kim, Y.W. Kim and G.D. Zhang: J. Mater. Res. Vol. 16 (2001) p.590.

[20] M. D. Sacks, G. W. Scheiffele, G. A. Staab: J. Am. Ceram. Soc. Vol. 79, p.1611.

[21] K. Hirao, M. Ohashi, M. Brito: J. Am. Ceram. Soc. Vol. 78, p.1687.

[22] F.J. Lee, K.J. Bowan: J. Am. Ceram. Soc. Vol. 75, p.1748.

[23] A. Bellosi, A. Tampieri, and Y.Z. Liu: Mater. Sci. Eng. A127 (1990), p.115.

[24] Y.G. Gogotsi and F. Porz: Corros. Sci., Vol. 33 (1992), p.627.

[25] Y.G. Gogotsi, F. Porz, and G. Dransfield: Oxi. Met., Vol. 39 (1993), p.69.