Testing and Characterization of Ceramic Thermal Barrier Coatings


Article Preview

This paper gives a short overview of tests applied for the investigation of long term behaviour of thermal barrier coating systems. A variety of tests has been conducted on an exemplary material system with the coatings applied by electron beam physical vapour deposition. Damages and damage evolution in different tests are compared. Since the observed damage mechanisms are different, it is proposed to design laboratory tests as realistic as possible, especially if the test data are used for lifetime assessment. In order to get reasonable testing times, the damage accumulation has to be described as a function of loading history, long time before failure. For the case of final failure by spallation of the ceramic top coat, it is proposed to use the apparent interfacial fracture toughness as damage parameter. Several methods for measuring the apparent fracture toughness of brittle coatings are discussed with respect to their application to thermal barrier coating systems.



Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels




M. Bartsch et al., "Testing and Characterization of Ceramic Thermal Barrier Coatings", Materials Science Forum, Vols. 492-493, pp. 3-8, 2005

Online since:

August 2005




[1] D. Renusch, H. Echsler, M. Schütze: Materials at High Temperatures Vol. 21 (2) (2004), p.65.

[2] M. Bartsch, B. Baufeld, K. Mull, C. Sick: Proc. Materialsweek (CD-ROM), Munich, Germany (2001).

[3] S.M. Meier, D.M. Nissley, K.D. Sheffler: NASA Contractor Report 189111.

[4] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Petit: Progr. Mat. Sci. Vol. 46 (2001), p.505.

[5] A. Karlsson, J.W. Hutchinson, A.G. Evans: Mat. Sci. & Eng. Vol. A351 (2003), p.244.

[6] S.H. Im, R. Huang: Acta Mat. Vol. 52 (2004), p.3707.

[7] K. Fritscher, U. Schulz, M. Schmücker: Publications Europ. Fed. Corrosion EFC Vol. 27 (1999), p.383.

[8] U. Schulz, M. Menzebach, C. Leyens, Y.Q. Yang: Surface & Coatings Techn. Vol. 146 (2001), p.117.

[9] P.K. Wright: Mat. Sci. & Eng. Vol. A245 (1998), p.191.

[10] B. Baufeld, et al.: Scripta Mat. Vol. 45 (2001) p.859.

[11] A. Peichl, T. Beck, O. Vöhringer: Surface and Coatings Techn. Vol. 162 (2003), p.113.

[12] M. Bartsch, K. Mull, C. Sick: Advanced Eng. Mat. Vol. 2 (11) (1999), p.127.

[13] M. Bartsch, B. Baufeld: Effects of Controlled Thermal Gradients in Thermal Mechanical Fatigue, Proc. 5th Int. Conf. on Low Cycle Fatigue LCF 5 (2003), in press.

[14] R.A. Miller: Journ. American Ceramic Society Vol. 67 (8) (1984), p.517.

[15] M. Bartsch, B. Baufeld: Fracture Mechanical Approach for a Lifetime Assessment of Ceramic Thermal Barrier Coatings, Proc. Europ. Conf. Fract. - ECF 14, Vol. I (2002), p.209.

[16] I. Hofinger, M. Oechsner, H. -A. Bahr, M. Swain: Int. Journ. of Fracture Vol. 92 (1998), p.213.

[17] P.H. Demarecaux, D. Chicot, J. Lasage: J. Mat. Sci. Letters Vol. 15 (1996), p.1377.

[18] A. Vasinonta, J. L. Beuth: Eng. Fract. Mechanics Vol. 68 (2001), p.843.

[19] I. Mircea, M. Bartsch: Modified indentation test to estimate the interfacial fracture toughness of thick TBC systems, Proc. 11th int. Conf. on Fracture, ICF 11, Turin (2005), submitted.

Fetching data from Crossref.
This may take some time to load.