A Multiscale Framework for Elastic Deformation of Functionally Graded Composites


Article Preview

A micromechanics-based elastic model is developed for two-phase functionally graded composites with locally pair-wise particle interactions. In the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, the homogenized elastic fields are obtained by integrating the pair-wise interactions from all other particles over the representative volume element. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The averaged elastic fields are solved for transverse shear loading and uniaxial loading in the gradation direction.



Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels




H.M. Yin et al., "A Multiscale Framework for Elastic Deformation of Functionally Graded Composites ", Materials Science Forum, Vols. 492-493, pp. 391-396, 2005

Online since:

August 2005




[1] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki and R.G. Ford: Functionally graded materials: design, processing and applications (Kluwer Academic Publishers, 1999).

DOI: https://doi.org/10.1007/978-1-4615-5301-4_6

[2] G.H. Paulino, Z.H. Jin and R.H. Dodds. Comprehensive structural integrity (B. Karihaloo and W.G. Knauss, editors. ), Vol. 2 (2003), p.607.

[3] J. Aboudi, M. -J. Pindera and S.M. Arnold: Composites Part B Vol. 30 (1999), p.777.

[4] T. Mori and K. Tanaka: Acta Metall. Vol. 21 (1973), p.571.

[5] R. Hill: J. Mech. Phys. Solids Vol. 13 (1965), p.213.

[6] B. Budiansky: J. Mech. Phys. Solids Vol. 13 (1965), p.223.

[7] J.W. Ju and T.M. Chen: Acta Mech. Vol. 103 (1994), p.123.

[8] T. Hirano, J. Teraki and T. Yamada: SMiRT 11 Transactions Vol. SD1 (1991), p.49.

[9] T. Reiter and G.J. Dvorak: J. Mech. Phys. Solids Vol. 46 (1998), p.1655.

[10] J.R. Zuiker and G.J. Dvorak: Compos. Eng. Vol. 4 (1994), p.19.

[11] H.M. Yin, L.Z. Sun and G.H. Paulino: Acta Mater. Vol. 52 (2004), p.3535.

[12] T. Reiter, G.J. Dvorak and V. Tvergaard: J. Mech. Phys. Solids Vol. 45 (1997), p.1281.

[13] J.K. Percus and G.J. Yevick: Phys. Rev. Vol. 110 (1958), p.1.

Fetching data from Crossref.
This may take some time to load.