Mixed-Mode Crack Propagation in Functionally Graded Materials


Article Preview

This paper presents numerical simulation of mixed-mode crack propagation in functionally graded materials by means of a remeshing algorithm in conjunction with the finite element method. Each step of crack growth simulation consists of the calculation of the mixedmode stress intensity factors by means of a non-equilibrium formulation of the interaction integral method, determination of the crack growth direction based on a specific fracture criterion, and local automatic remeshing along the crack path. A specific fracture criterion is tailored for FGMs based on the assumption of local homogenization of asymptotic crack-tip fields in FGMs. The present approach uses a user-defined crack increment at the beginning of the simulation. Crack trajectories obtained by the present numerical simulation are compared with available experimental results.



Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels




J. H. Kim and G. H. Paulino, "Mixed-Mode Crack Propagation in Functionally Graded Materials", Materials Science Forum, Vols. 492-493, pp. 409-414, 2005

Online since:

August 2005




[1] T. Hirai. Proceedings of the Second International Symposium on Functionally Gradient Materials, volume 34 of Ceramic Transactions (J.B. Holt, M. Koizumi, T. Hirai and Z.A. Munir, editors, The American Ceramic Society, Westerville, Ohio, 1993), p.11.

[2] S. Suresh and A.Q. Mortensen: Fundamentals of Functionally Graded Materials (IOM Communications Ltd, London, 1998).

[3] G.H. Paulino, Z.H. Jin and R.H. Dodds Jr: Comprehensive Structural Integrity (B. Karihaloo and W.G. Knauss, editors, volume 2, Chapter 13, Elsevier Science, 2003), p.607.

[4] B. Ilschner: Journal of the Mechanics and Physics of Solids Vol. 44(5), p.647.

[5] N.T. Hart, N.P. Brandon, M.J. Day and J.E. Shemilt: Journal of Materials Science Vol. 36 (2001), p.1077.

[6] J.H. Kim: Mixed-mode crack propagation in functionally graded materials, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Illinois, (2003).

[7] P.A. Wawrzynek: Interactive finite element analysis of fracture processes: An integrated approach, M.S. Thesis, Cornell University, (1987).

[8] J. Dolbow and M. Gosz: International Journal of Solids and Structures Vol. 39 (9) (2002), p.2557.

[9] J.H. Kim and G.H. Paulino: Computer Methods in Applied Mechanics and Engineering Vol. 192 (11-12) (2003), p.1463.

[10] G.H. Paulino and J.H. Kim: Engineering Fracture Mechanics Vol. 71 (13-14) (2004), p. (1907).

[11] J.R. Rice: ASME Journal of Applied Mechanics Vol. 35 (2) (1968), p.379.

[12] J.F. Yau, S.S. Wang and H.T. Corten: ASME Journal of Applied Mechanics Vol. 47 (2) (1980), p.335.

[13] J.W. Eischen: International Journal of Fracture Vol. 34 (1) (1987), p.3.

[14] M.A. Hussain, S.L. Pu and J. Underwood: Fracture Analysis (P.C. Paris and G.R. Irwin, editors, ASTM STP 560, American Society for Testing and Materials, Philadelphia, PA, 1993), p.2.

[15] C.E. Rousseau and H.V. Tippur: Acta Materialia Vol. 48 (16) (2000), p.4021.