Optimal Design of Graded Materials in 3-D Heat Transfer


Article Preview



Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels




A. Donoso, "Optimal Design of Graded Materials in 3-D Heat Transfer", Materials Science Forum, Vols. 492-493, pp. 489-494, 2005

Online since:

August 2005





[1] J.C. BELLIDO: Nonlinear Analysis, Vol. 52, (2003), pp.1709-1726.

[2] P. PEDREGAL: In Proceedings of the NATO Advanced workshop in Nonlinear Homogeneization (Warsaw, June, 2003).

[3] L. TARTAR: G. Buttazzo, G. Bouchitte and P. Suquet, eds., World Scientific, Singapore, (1994), pp.279-296.

[4] F. MURAT: Ann. Mat. Pura ed Appl., Serie 4, Vol. 112, (1977), pp.49-68. (a) Half-section (b) Iso-surfaces temperature Fig. 2: Optimal solution of Example 2.

[5] G. ALLAIRE: Shape Optimization by the Homogenization Method, (Springer, 2002).

[6] M.P. BENDSØE AND O. SIGMUND: Topology Optimization: Theory, Methods and Applications, (Springer, 2003).

[7] Y. GRABOVSKY: Advan. Appl. Math, Vol. 27, iss. 4, (2001), pp.683-704(22).

[8] R. LIPTON AND A. VELO: Nonlinear Partial Differential Equations and Their Aplications, College de France Seminar, D. Cioranescu, F. Murat, and J. L Lions eds, Chapman and Hall/CRC Research Notes in Mathematics, (2000).

[9] R.K. KOHN AND G. STRANG : Comp. Pure. Appl. Math., Vol. 35, (1986), pp.113-137, 139-182, 353-377.

[10] B. DACOROGNA: Direct methods in the Calculus of Variations, (Springer, 1989).

[11] E. ARANDA AND P. PEDREGAL: Discrete and Continuous Dynamical Systems (Supplement Volume), (2003) pp.30-41.

[12] A. DONOSO AND P. PEDREGAL: (submitted).

[13] A. DONOSO: (submitted).

[14] J. GOODMAN, R.V. KOHN AND L. REYNA: Computer Methods in Applied Mechanics and Engineering Vol. 57, (1986), pp.107-127.