Optimisation of FGM TBC and Their Thermal Cycling Stability

Abstract:

Article Preview

Application of FGM concept for thermal barrier coatings (TBC) provides a superior thermal stress relaxation over homogeneous or duplex coatings. It was demonstrated that FGM TBC have better oxidation resistance and longer lifetime during test conditions. In this work, new FGM TBC system was designed using high-velocity oxygen flame (HVOF) coating process. After coatings optimisation, coating layer was subjected to a hot burner test for thermal fatigue cycling with increasing heat load. It was found that FGM TBC has successfully withstood thermal cycling and prevented visible delamination or transverse cracks. New coating design may give an opportunity to develop a cost-effective FGM TBC system for gas turbine applications.

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Edited by:

Omer Van der Biest, Michael Gasik, Jozef Vleugels

Pages:

9-14

Citation:

M. M. Gasik et al., "Optimisation of FGM TBC and Their Thermal Cycling Stability", Materials Science Forum, Vols. 492-493, pp. 9-14, 2005

Online since:

August 2005

Export:

Price:

$38.00

[1] J. C. Zink: Power Eng. Vol. 3 (1998), p.20.

[2] K. S. Chan, N. S. Cheruvu, G. R. Leverant: J. Eng. Gas Turbines and Power (1998), p.609.

[3] P. W. Schilke, A. D. Foster, J. J. Pepe, A. M. Beltran: Adv. Mater. & Processes Vol. 4 (1992), p.22.

[4] K. J. Pallos: Gas Turbine Repair Technology, GER-3957B, GE Power (2001), 25 pp.

[5] T. Hirai: Materials Science and Technology: A Comprehensive Treatment, Ed. R. J. Brook (VCH Verlags GmbH, Germany, 1996), 17B, p.293.

[6] Functionally Graded Materials: Design, Processing and Applications, Eds. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, and R.G. Ford. (Kluwer Academic Publishers, Bosten/ Dordrecht/ London, 1999), 320 pp.

DOI: https://doi.org/10.1007/978-1-4615-5301-4_6

[7] S. Suresh and A. Mortensen: Fundamentals of Functionally Graded Materials, (IOM Communications Ltd., London, 1998), 166 pp.

[8] A. Kawasaki and R. Watanabe: Mater. Sci. Forum Vol. 308-311 (1999), p.402.

[9] M. Willert-Porada, R. Rorchert: Mater. Sci. Forum Vol. 308-311 (1999), p.422.

[10] H. Fujikawa, H. Makiura, Y. Nishiyama: Materials and Corrosion Vol. 50 (1999), p.154.

[11] M. Gasik: FGM - Technology Leveraged Applications, Denver (MPIF, 2002), p.88.

[12] S. Ueda and M. Gasik: J. Thermal Stresses Vol. 23 (2000), p.395.

[13] S. Ueda and M. Gasik: Theor. and Appl. Mech. Vol. 50 (2001), p.41.

[14] N. Nomura, M. Gasik, A. Kawasaki, R. Watanabe: Functionally Graded Materials 2000, Ceramic Trans. Vol. 114 (Amer. Ceram. Soc., USA, 2001), p.223.

[15] N. Nomura, M. Gasik, K. Korpiola, E. Rajamäki, A. Kawasaki, R. Watanabe, S. Hanada: Proc. 4th Pacific Rim Conf., Hawaii, 2 (Publ. Japan Institute of Metals, 2001), p.2235.

[16] Y. Itoh, M. Saitoh, M. Tamura: J. Eng. Gas Turbines & Power Vol. 122 (2000), p.43.

[17] A. Kawasaki, R. Watanabe: Functionally Graded Materials 1996, Eds. I. Shoita, Y. Miyamoto (Elsevier Science Publ., 1997), p.143.

Fetching data from Crossref.
This may take some time to load.