Synthesis and Characterization of III-V Rod Shape Semiconductor Nanocrystals


Article Preview

InP and InAs quantum rods were synthesized via the reactions of monodispersed indium droplets with phosphide or arsenide ions, respectively. In these reactions indium droplets, which do not act as a catalyst but rather as a reactant, are completely consumed. For the synthesis of InP and InAs quantum rods with a narrow size distribution, a narrow size distribution of indium particles is required because each indium droplet serves as a template to strictly limit the lateral growth of individual InP or InAs nanocrystals. Free-standing InP (130 Å diameter and 870 Å length) and InAs (180 Å diameter and 745 Å length) quantum rods without residual metallic catalyst at the rod tip were synthesized from the diluted transparent solutions of metallic indium. Both kinds of synthesized nanorods are in the strong confinement regime since the Bohr diameters of InP and InAs are 200 and 700 Å, respectively.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic




J.M. Nedeljković et al., "Synthesis and Characterization of III-V Rod Shape Semiconductor Nanocrystals", Materials Science Forum, Vol. 494, pp. 121-128, 2005

Online since:

September 2005




[1] C. M. Lieber, Solid State Commun. 107 (1998), p.607.

[2] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivasatos, Nature 404 (2000), p.59.


[3] J. Hu, L. Li, W. Yang, L. Manna, L. Wang, A. P. Alivasatos, Science 292 (2001), p. (2063).

[4] H. Htoon, J. A. Hollingsworth, A. V. Malko, R. Dickerson, V. I. Klimov, Appl. Phys. Lett. 82 (2003), p.4776.

[5] M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, Adv. Mater. 14 (2002), p.317.

[6] Y. Wu, P. Yang, J. Am. Chem. Soc. 123 (2001), p.3165.

[7] C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, IBM J. Res. Dev. 45 (2001), p.47.

[8] W. U. Huynh, J. J. Dittmer, A. P. Alivasatos, Science 295 (2002), p.2425.

[9] Z. Tang, N. A. Kotov, M. Giersig, Science 297 (2002), p.237.

[10] Y. -H. Kim, Y. -w. Jun, B. -H. Jun, S. -M. Lee, J. Cheon, J. Am. Chem. Soc. 124 (2002), p.13656.

[11] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, W. E. Buhro, J. Am. Chem. Soc. 119 (1997), p.2172.

[12] S. P. Ahrenkiel, O. I. Mićić, A. Miedaner, C. J. Curtis, J. M. Nedeljković, A. J. Nozik, Nano Lett. 3 (2003), p.833.

[13] H. Yu, J. Li, R. A. Loomis, L. -W. Wang, W. E. Buhro, Nat. Mater. 2 (2003), p.517.

[14] S. Kan, A. Aharoni, T. Mokari, U. Banin, Faraday Discuss. 125 (2004), p.23.

[15] S. Kan, T. Mokari, E. Rothenberg, U. Banin, Nat. Mater. 2 (2003), p.55.

[16] J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A. Miedaner, A. J. Nozik, J. Am. Chem. Soc. 126 (2004), p.2632.

[17] K. Deppert, M. H. Magnusson, L. Samuelson, J. -O. Malm, C. Svensson, J. -O. Bovin, J. Aerosol Sci. 29 (1998), p.737.

[18] K. Deppert, J. -O. Bovin, M. H. Magnusson, J. -O. Malm, C. Svensson, L. Samuelson, Jpn. J. Appl. Phys. 38 (1999), p.1056.

[19] D. C. Bradley, D. M. Frigo, M. B. Hursthouse, B. Hussain, Organometallics 7 (1988), p.1112.

[20] K. Soulantica, A. Maisonnat, M. -C. Fromen, M. -J. Casanove, P. Lecante, B. Chaudret, Angew. Chem., Int. Ed. 40 (2001), p.448.


[21] K. -L. Tsai, J. L. Dye, J. Am. Chem. Soc. 113 (1991), p.1650.

[22] J. Coombes, J. Phys. F: Metal Phys. 2 (1972), p.441.

[23] Y. Zhao, Z. Zhang, H. Dang, J. Phys. Chem. B 107 (2003), p.7574.