Characterization of Nanoporous Lanthanide-Doped Gadolinium Gallium Garnet Powders Obtained by Propellant Synthesis


Article Preview

In the present work we study the nanocrystalline powders of lanthanide-doped Gd3Ga5O12 (GGG, gadolinium gallium garnet) prepared using propellant synthesis. A series of GGG samples containing a number of different trivalent lanthanide ions (Tm, Er, Ho, Eu, Sm, Nd, and Pr) in different quantities (1%, 5%, 10%) were produced. Samples were characterized by X-ray diffraction (pre- and post calcination) for phase identification and line-broadening analysis, and by electron microscopy (SEM and TEM) for morphological and nanostructural investigation. Thermal behavior of the powder was investigated by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The samples have a polycrystalline porous structure. Elemental microanalysis made by energy dispersive X-ray spectroscopy (EDX) detector attached to TEM and XRD unit-cell determinations confirmed that the lanthanides ions entered the structure of GGG. Crystallites have a high degree of disorder.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic




R. Krsmanović et al., "Characterization of Nanoporous Lanthanide-Doped Gadolinium Gallium Garnet Powders Obtained by Propellant Synthesis ", Materials Science Forum, Vol. 494, pp. 143-148, 2005

Online since:

September 2005




[1] J. McKittrick, L. E. Shea, C.F. Bacalski, E. J. Bosze, Displays 19 (1999), p.169.

[2] P. Alivisatos, Science 271 (1996), p.933.

[3] B. M. Tissue, Chem. Mater. 10 (1998), p.2837.

[4] L. E. Shea, J. McKittrick, O. A. Lopez, E. Sluzky, J. Am Ceram. Soc. 79 (1996), p.3257.

[5] G. Tessari, M. Bettinelli, A. Speghini, D. Ajò, G. Pozza, L. E. Depero, B. Allieri, L. Sangaletti, Appl. Surf. Sci. 144-145 (1999), p.686.


[6] P. K. Sharma, M. H. Jilavi, H. Schmidt, V. K. Varadan, Int. J. Inorg. Mater. 2 (2000), p.407.

[7] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini, J. Mater. Res. 15 (2000), p.586.

[8] S. Polizzi, G. Fagherazzi, M. Battagliarin, M. Bettinelli, A. Speghini, J. Mater. Res. 16 (2001), 146.

[9] V. Lupei, Opt. Mater. 19 (2002), p.95.

[10] W. Lenth, R. M., Macfarlane, Opt. Photon. News 3 (1992), p.8.

[11] R. Scheps, Prog. Quant. Electron. 2 (1996), p.271.

[12] Y. Tao, G. Zhao, W. Zhang, S. Xia, Mater. Res. Bull. 32 (1997), p.501.

[13] N. J. Wagner, (J.B. Cohen ed. ) Met. Soc. Conf., 36, Gordon & Breach, New York (1966).

[14] P. I. Adler, C. N. J. Wagner, J. Appl. Phys. 33 (1962), p.3451.

[15] S. Enzo, G. Fagherazzi, A. Benedetti, S. Polizzi, J. Appl. Cryst. 21 (1988), p.536.

[16] B.E. Warren, X-Ray Diffraction, Dover Publications, Reprint edition (1990).

[17] Powder Diffraction File, JCPDS International Centre for Diffraction Data, Swarthmore PA, PDF n. 13-0493. Fig. 5 Typical TEM image of GGG: Er 5%mol, inset: correspondent selected area electron diffraction pattern confirms polycrystalline structure Fig. 4 TEM images of GGG: Er 5% mol (heated at 800°C for 72 hr).