Adsorption of Tiron onto Alumina

Abstract:

Article Preview

It has been shown recently that small organic molecules, used as dispersants in the colloidal processing of ceramic powders to adjust the forces between the particles, are quite efficient in preparing aqueous suspensions of high solid loadings and low viscosity. One of them is 4,5-dihydroxy-1,3-benzenedisulfonic acid, disodium salt monohydrate, ((OH)2C6H2(SO3Na)2·H2O), commercially known as Tiron. The adsorption of Tiron, as a function of its concentration and solution pH, onto alumina was investigated by the solution depletion method, applying UV spectrophotometry. KNO3 (10-2 mol/l) was used as the background electrolyte. The obtained results indicate an increase in the amount of adsorbed Tiron with its increasing concentration. The maximum adsorption was recorded at pH≈7 when the Tiron molecule was uncharged, i.e. undissociated (pKa1=7.6). The experimental data were fitted with different adsorption isotherm models. The maximum amount of Tiron adsorbed, as well as the constants of adsorption process were calculated.

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic

Pages:

399-404

Citation:

J.J. Roćen et al., "Adsorption of Tiron onto Alumina", Materials Science Forum, Vol. 494, pp. 399-404, 2005

Online since:

September 2005

Export:

Price:

$38.00

[1] R.J. Pugh in Surface and Colloid Chemistry in Advanced Ceramics Processing, Vol. 51, Eds. R.J. Pugh and L. Bergstrom (Marcel Dekker, USA 1994), p.166.

[2] E. Laarz and L. Bergstrom, J. Eur. Ceram. Soc., Vol. 20 (2000), p.431.

[3] R. Moreno, Am. Ceram. Bull., 71 (1992), p.1521.

[4] L. Guo, Y. Zhang, N. Uchida and K. Uematsku, J. Am. Ceram. Soc., 81 (1998), p.549.

[5] J. Cesarano III and I.A. Aksay, J. Am. Ceram. Soc., Vol. 71 (1998), p.1062.

[6] J. Cesarano III, I.A. Aksay and A. Bleir, J. Am. Ceram. Soc., Vol. 71 (1998), p.250.

[7] G. Pederse and L. Bergstrom, J. Am. Ceram. Soc., Vol. 82 (1999), p.1137.

[8] P.C. Hidber, T.J. Graule and L.J. Gauckler, J. Am. Ceram. Soc., Vol. 79 (1996), p.1857.

[9] P.C. Hidber, T.J. Graule and L.J. Gauckler, J. Eur. Ceram. Soc., Vol. 17 (1997), p.239.

[10] O. Lyckfeldt and J.M. Ferreira, Key Eng. Mater., Vol. 132-136 (1997), p.313.

[11] G. Tari, J.M.F. Ferreira and O. Lyckfeldt, J. Eur. Ceram. Soc., Vol. 17 (1997), p.1341.

[12] G. Tari, J.M.F. Ferreira and O. Lyckfeldt, J. Eur. Ceram. Soc., Vol. 18 (1998), p.479.

[13] B.J. Briscoe, A. U. Khan and P.F. Luckham, J. Eur. Ceram. Soc., Vol. 18 (1998), p.2141.

[14] R. Laucournet, PhD Thesis, University of Limoges, Limoges, France (2000).

[15] A.U. Khan, B.J. Briscoe and P.F. Luckham, Colloids Surfaces A, Vol. 161 (2000). p.243.

[16] R. Laucournet, C. Pagnoux and J. Baumard, J. Am. Ceram. Soc., Vol. 83 (2000), p.2661.

[17] C. Pagnoux, R. Laucournet, T. Chartier, J. Baumard, Korean J. Ceram., Vol. 6 (2000), p.280.

[18] S.A. Wasay, C. Tokunaga and S-W. Park, Sep. Sci. Technology, 31 (1996), p.1501.

[19] Ž. Todorović, S.K. Milonjić and V.T. Dondur, Mater. Sci. Forum, Vol. 453-454 (2004), p.361.