Alginate Microbeads as Potential Support for Cultivation of Bone Marrow Stromal Cells


Article Preview

Alginate is currently being employed and explored for a broad range of biomedical and biotechnology applications, due to its biodegradability and simple procedure for cell immobilization. However, cell immobilization was mostly aimed for immunoisolatory and biochemical processing applications and far less is known about potentials of alginate as a substrate for tissue formation. In the present work, isolation, immobilization and cultivation procedures of murine bone marrow stromal cells (BMSC) were studied and standardized in order to establish the alginate-bioreactor culture system for chondrogenic and/or hematopoiesis-supportive tissue progression. Two techniques for cell immobilization based on alginate were investigated: entrapment within gel matrix using electrostatic droplet generation and simple cell adsorption onto gel surfaces. Alginate gels in forms of microbeads and discs with immobilized culture expanded BMSC were cultivated for up to 30 days and analyzed for surface properties, cell concentration, viability, and differentiation.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic




D. Bugarski et al., "Alginate Microbeads as Potential Support for Cultivation of Bone Marrow Stromal Cells ", Materials Science Forum, Vol. 494, pp. 525-530, 2005

Online since:

September 2005




[1] L.E. Freed, G. Vunjak-Novakovic, Principles of Tissue Engineering, p.143 Academic Press, San Diego, USA (2000).

[2] G.F. Muschler, C. Nakamoto, L.G. Griffith, J. Bone Joint Surg. Am., 86 (2004), p.1541.

[3] R.J. Deans, A.B. Moseley, Exp. Hematol., 28 (2000), p.875.

[4] P. Bianco, M. Riminucci, S. Gronthos, P.G. Robey, Stem Cells, 19 (2001), p.180.

[5] E.H. Javazon, K.J. Beggs, A.W. Flake, Exp. Hematol., 32 (2004), p.414.

[6] J.E. Melvik, M. Dornish, Fundamentals of cell immobilization biotechnology, p.33 Kluwer Academic Publishers, Dordrecht, The Nederlands (2004).

[7] R.L. Carrier, M. Rupnick, R. Langer, F.J. Schoen, L.E. Freed, G. Vunjak-Novakovic, Tissue Eng. 8 (2002), p.175.


[8] M. Radisic, L. Yang, J. Boublik, R.J. Cohen, R. Langer, L.E. Freed, G. Vunjak-Novakovic, Am. J. Physiol. Heart Circ. Physiol. (in press, 2004).

[9] L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder,V. Shinde-Patil, L. Zichner, D. Kaplan, R. Langer, G. Vunjak-Novakovic, Annals Biomed. Eng., 32 (2004), p.112.


[10] I. Martin, V.P. Shastri, R.F. Padera, J. Yand, A.J. Mackay, R. Langer R., G. VunjakNovakovic, L.E. Freed, J. Biomed. Mater. Res., 55 (2001), p.229.

[11] D. Poncelet, V.G. Babak, R.J. Neufeld, M. Goosen, B. Bugarski, Adv. Colloid Interface Sci. 79 (1999), p.213.

[12] D. Poncelet, R.J. Neufeld, M. Goosen, B. Bugarski, V.G. Babak, AIChE J, 45 (1999), p. (2018).

[13] B.M. Bugarski, B. Obradovic, V.A. Nedovic, D. Poncelet, Fundamentals of cell immobilization biotechnology, p.277 Kluwer Academic Publishers, Dordrecht, The Nederlands (2004).

[14] B. Obradovic, D. Bugarski, M. Petakov, G. Jovcic, N. Stojanovic, B. Bugarski, G. VunjakNovakovic, Mat. Sc. Forum, 453-454 (2004), p.549.


[15] E. Lavik, R. Langer, Appl. Microbiol. Biotechnol., 65 (2004), p.1.

[16] G. Vunjak-Novakovic, M. Radisic, B. Obradovic, Hem. Indust., 58 (2004), p.65.

[17] M.K. Majumdar, V. Banks, D.P. Peluso, E.A. Morris, J. Cell Physiol., 185 (2000), p.98.

[18] M. Weber, A. Steinert, A. Jork, A. Dimmler, F. Thurmer, N. Schutze, C. Hendrich, U. Zimmermann, Biomaterials, 23 (2002), p. (2003).

[19] V. Nedovic, B. Obradovic, I. Leskosek-Cukalovic, O. Trifunovic, R. Pesic, B. Bugarski, Proc. Biochem. 37 (2001), p.17.


[20] B. Bugarski, J. Smith, J. Wu, M.F.A. Goosen, Biotech. Techniq., 7 (1993), p.677.

Fetching data from Crossref.
This may take some time to load.