Hyperbolic Propagation of a Thermal Signal in an Inhomogeneous Medium


Article Preview

A numerical procedure for the calculation of space distribution of the thermal field in thermally inhomogeneous solids with thermal memory induced by a harmonically modulated surface heat source is presented. The procedure is based on the division of the complex hyperbolic heat conduction equation into four real first-order differential equations, followed by employment of the Bulirsch-Stoer method with adoptive stepsize. The applicability of the procedure is then demonstrated in few issues, important for the understanding of thermal signal distribution.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic




S. Galović et al., "Hyperbolic Propagation of a Thermal Signal in an Inhomogeneous Medium", Materials Science Forum, Vol. 494, pp. 95-100, 2005

Online since:

September 2005




[1] D.Y. Tzou, Int. J. Heat Mass Transfer, Vol. 36 (1993), p.1845.

[2] A. Vedavarz, S. Kumar, M.K. Moallemi, ASME J. Heat Transfer, Vol. 116 (1994), p.221.

[3] A. Barletta: Int. J. Heat Mass Transfer, Vol. 39 (1996), p.3261.

[4] M. Naji, M.A. Al-Nimr, M. Hader, Int. J. Thermophys., Vol. 24 (2003), p.545.

[5] S. Galovic, D. Kostoski, J. Appl. Phys., Vol. 93 (2003), p.3063.

[6] I.A. Novikov, J. Appl. Phys., Vol. 81 (1997), p.1067.

[7] S. Galovic, M. Dramicanin, J. Phys. D: Appl. Phys., Vol. 32 (1999), p.1511.

[8] G. Gosch, M. Reigl, J. Appl. Phys., Vol. 79 (1996), p.9084.

[9] W. H. Press, et al., Numerical recipes, Cambridge University Press, Cambridge, (1986).

[10] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, Berlin, (1983).

[11] S. Galovic, Thermal memory effect on temperature field in a finite medium, to be published.

[12] S. Galović, Proceeding of XVI National Symposium on Condensed Matter Physics SFKM 2004, Sokobanja, September 20-23, 2004, Serbia and Montenegro, pp.321-324.