Solid State Phase Transformations under High Magnetic Fields in a Medium Carbon Steel


Article Preview

High magnetic fields were applied to the austenite to proeutectoid transformation and tempering process in a 42CrMo steel. The thermodynamic and kinetic effects of the high magnetic field on the austenite decomposition show that it can obviously increase the amount of the product ferrite and accelerate the transformation by enhancing the Gibbs free energy difference between the parent and product phases. Moreover, the magnetic field can considerably lower the amount of low angle misorientations of ferrite in pearlite colonies and obviously increase the frequency of S3-29 coincidence boundaries, especially S3 boundaries, of the ferrite. But it has no obvious effect on crystallographic orientation distribution. When the field is applied to the high temperature tempering process, it can effectively prevent the directional growth of cementite along martensite plate boundaries and twin boundaries by increasing both the cementite/ferrite interfacial energy and the magnetostrictive strain energy. Finally, particle-like cementite is obtained. The magnetic field also obviously retards the formation and growth of the ‘distortion-free’ regions of the matrix.



Materials Science Forum (Volumes 495-497)

Edited by:

Paul Van Houtte and Leo Kestens




Y. D. Zhang et al., "Solid State Phase Transformations under High Magnetic Fields in a Medium Carbon Steel ", Materials Science Forum, Vols. 495-497, pp. 1131-1140, 2005

Online since:

September 2005




[1] M.A. Krivoglaz and V.D. Sadovskiy: Fiz. Metal. Metalloved. Vol. 18 (1964), p.502.

[2] K.R. Satyanarayan, W. Eliasz and A.P. Miodownik: Acta Metall. Vol. 16 (1968), p.877.

[3] T. Kakeshita, K. Shimizu, S. Funada and M. Date: Acta Metall. Vol. 33 (1985), p.1381.

[4] H.D. Joo, S.U. Kim, N.S. Shin and Y.M. Koo: Vol. 43 ( 2000), p.225.

[5] H. Guo and M. Enomoto: Mat. Trans. JIM Vol. 41 (2000), p.911.

[6] M. Shimotomai and K. Maruta: Scripta Mater. Vol. 42 (2000) p.499.

[7] H. Ohtsuka, Y. Xu and H. Wada: Mat. Trans. JIM Vol. 41 (2000), p.907.

[8] M. Shimotomai, K. Maruta, K. Mine and M. Matsui: Acta Mater. Vol. 51 (2003), p.2921.

[9] J.K. Choi, H. Ohtsuka, Y. Xu, W.Y. Choo: Scripta Mater. Vol. 43 (2000), p.221.

[10] Y. Xu, H. Ohtsuka, H. Wada and J.K. Choi: Trans. Mater. Res. Vol. 25 (2000), p.505.

[11] M. Enomoto H. Guo, Y. Tazuke, Y.R. Abe and M. Shimotomai: Metall. Mater. Trans. Vol. 32A (2001), p.445.

[12] Y.D. Zhang, C.S. He, X. Zhao, L. Zuo, C. Esling and J.C. He: J. Magn. Magn. Mater. In press (2005).

[13] Y.D. Zhang, C.S. He, X. Zhao, C. Esling and L. Zuo,: Adv. Eng. Mater. Vol. 6 (2004), p.310.

[14] H.B. Chang, Z.G. Li, T.Y. Hsu and X.Y. Ruan: Acta Metall. Sinica (Eng. Lett. ) Vol. 11 (1998), p.207.

[15] Y.D. Zhang, C.S. He, X. Zhao, L. Zuo, C. Esling and J.C. He: J. Magn. Magn. Mater. Vol. 284 (2004), p.287.

[16] Y.D. Zhang, G. Vincent, N. Dewobroto, L. Germain, X. Zhao, L. Zuo, C. Esling, J. Mater. Sci. Vol 40 (2005), In press.

[17] F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena (Pergamon Press, USA, 1995).

[18] T. Watanabe: Res Mechanica Vol. 11 (1984), p.47.

[19] Y.D. Zhang, N. Gey, C. S. He, X. Zhao, L. Zuo and C. Esling, Acta Mater. Vol. 52 (2004), p.3467.

[20] T.Y. Hsu. Theory of Phase Transformation (Science Press of China, China 1988).

[21] H.O. Martikainen and V.K. Lindroos: Scand. J. Metall. Vol. 10 (1981) p.3.