Texture Studies on Borocarbide Thin Films


Article Preview

Epitaxial thin films of the superconducting borocarbide compound YNi2B2C were grown on single crystal MgO (100) substrates without and with Y2O3 buffer layer using pulsed laser deposition (PLD). In both cases YNi2B2C grows with [001] normal to the substrate. However, the in-plane texture depends on the starting condition. For samples without buffer layer, oxygen from the substrate diffuses into the film and forms an Y2O3 reaction layer at the interface. As a consequence, a deficiency of Y is generated giving rise to the formation of secondary phases. On the other hand, using an artificial Y2O3 buffer layer secondary phases are suppressed. The texture of the Y2O3 layers determines the texture of the YNi2B2C film. The superconducting properties of the borocarbide films are discussed with respect to texture and phase purity.



Materials Science Forum (Volumes 495-497)

Edited by:

Paul Van Houtte and Leo Kestens




K. Subba Rao et al., "Texture Studies on Borocarbide Thin Films", Materials Science Forum, Vols. 495-497, pp. 1425-1430, 2005

Online since:

September 2005




[1] R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck Jr., T. Siegrist, B. Batlogg, B. van Dover, R.J. Felder, K. Muzuhashi, J.O. Lee, H. Eisaki and S. Uchida: Nature 367 (1994), p.252.

DOI: https://doi.org/10.1038/367252a0

[2] B.K. Cho, P.C. Canfield and D.C. Johnston: Phys. Rev. Lett. 77 (1996), p.163.

[3] S.V. Shulga, S. -L. Drechsler, G. Fuchs, K. -H. Müller, K. Winzer, M. Heinecke and K. Krug: Phys. Rev. Lett. 80 (1998), p.1730.

DOI: https://doi.org/10.1103/physrevlett.80.1730

[4] P.C. Canfield, P.L. Gammel and D.J. Bishop: Phys. Today (1998), p.40.

[5] B.K. Cho, P.C. Canfield, L.L. Miller, D.C. Johnston, W.P. Beyermann and A. Yatskar: Phys. Rev. B 52 (1995), p.3684.

[6] D. Souptel, G. Behr, A. Kreyssig and W. Löser: J. Crystal Growth, (2004) submitted.

[7] A. Canesi, M.R. Cimberle, C. Ferdeghini, A. Diaspro, P. Guasconi, S. Gariglio, D. Marrè, M. Putti, A.S. Siri, F. Canepa, P. Manfrinetti and A. Palenzona: Physica C 299 (1998), p.15.

DOI: https://doi.org/10.1016/s0921-4534(98)00047-1

[8] A. Andreone, M. Iavarone, R. Vaglio, P. Manini and E. Cogliati: Appl. Phys. Lett. 69 (1996), p.118.

DOI: https://doi.org/10.1063/1.118094

[9] K. Häse, B. Holzapfel and L. Schultz: Physica C 288 (1997), p.28.

[10] S.C. Wimbush, K. Häse, L. Schultz and B. Holzapfel: J. Phys. Condens. Matter 13 (2001), p. L355.

[11] G. Grassano, M.R. Cimberle, C. Ferdeghini, M. Iavarone, R. Di Capua, R. Vaglio and F. Canepa: Physica C 341-348 (2000), p.757.

DOI: https://doi.org/10.1016/s0921-4534(00)00678-x

[12] G. Wang and K. Maki: Phys. Rev. B 58 (1998), p.6493.

[13] N.M. Hong, H. Michor, M. Vybornov, T. Holubar, P. Hundegger, W. Perthold, G. Hilscher and P. Rogl: Physica C 227 (1994), p.85.

DOI: https://doi.org/10.1016/0921-4534(94)90360-3

[14] M. Reibold, S.C. Wimbush, B. Holzapfel and U. Krämer: J. Alloys Comp. 347 (2002), p.24.

[15] G.H. Cao, P. Simon and W. Skrotzki: J. Mater. Res. 19 (2004), p.1413.

[16] J.A. Dean: Lange's Handbook of Chemistry (McGraw Hill, New York 1985).

[17] G.H. Cao, P. Simon, U. Krämer, S.C. Wimbush and B. Holzapfel: Chem. Mater. 16 (2004), p.842.

[18] G.H. Cao, P. Simon, W. Skrotzki, S.C. Wimbush and B. Holzapfel: Appl. Phys. A (2004), in press.

[19] G.H. Cao, P. Simon, W. Skrotzki, S.C. Wimbush and B. Holzapfel: Appl. Phys. Lett., (2004) submitted.

[20] G. Grassano, D. Marrè, I. Pallecchi, F. Ricci, A.S. Siri and C. Ferdeghini: Supercond. Sci. Technol. 14 (2001), p.117.

[21] K. Häse, D. Hough, B. Holzapfel and L. Schultz: Physica B 284-288 (2000), p.1105.

[22] K. Subba Rao, G.H. Cao, R. Tamm, C. -G. Oertel, W. Skrotzki, S.C. Wimbush and B. Holzapfel: Int. Seminar on Advanced X-ray Techniques in Research and Industry (XTRI), India, (2004), in press.

Fetching data from Crossref.
This may take some time to load.