Effect of Heat Treatment on Microstructure of Commercial and Vacuum Sintered High Speed Steels AISI M2 and T15


Article Preview

The effect of quenching heat treatments on the microstructure of cast and worked commercial steel AISI M2 and hot isostatically pressed as well as IPEN vacuum sintered AISI T15 have been studied. The quenching treatments were carried out from 1160, 1185, 1210 and 1235°C. The average grain size, volume fraction and average size of the primary carbides M6C and MC were determined by scanning electron microscopy and by using the digital image analysis method "Quantikov". An increase in average austenite grain size with increase in quenching temperature was observed for the AISI M2 commercial steel and vacuum sintered specimens. In the case of the AISI T15 steel specimens, increase in quenching temperature did not result in an increase in average grain size, both for the commercial and the vacuum sintered steels. The average size and volume fraction of M6C and MC carbides remained unaltered with increase in quenching temperature.



Materials Science Forum (Volumes 498-499)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




R. A. Nogueira et al., "Effect of Heat Treatment on Microstructure of Commercial and Vacuum Sintered High Speed Steels AISI M2 and T15", Materials Science Forum, Vols. 498-499, pp. 186-191, 2005

Online since:

November 2005




[1] M. R. Ghomashchi and C. M. Sellars, Metall. Trans. 24A, (1993), pp.2171-80.

[2] H. Leitner, P. Kamer, G. Lichtenegger, A. Kneissl, F. Jeglitsch, Prakt. Metallogr. 34, (1997), pp.434-45.

[3] G. Hoyle, High Speed Steel, Butterworth & Co, UK (1988), pp.52-74.

[4] M. R. Ghomashchi, Acta Mater., 46, (1998), pp.5207-20.

[5] T. A. Neumeyer and A. Kasak, Metall. Trans., 3 (1972), pp.2281-87.

[6] A. Omsén, J. Iron Steel Inst., 207, (1969), pp.610-20.

[7] J. P. Gill, Trans. ASM, 24, (1936), pp.735-73.

[8] K. Bungardt and O. Mülders, Arch. Eisenhüttenw, 35, (1964), pp.1079-87.

[9] A. Basu, B. K. Ghosh, S. Jana, S. C. Dasgupta, Metals Tech., (1980), pp.151-8.

[10] F. Kaiser and M. Cohen, Metal Progress, 61, (1952), pp.80-5.

[11] R.A. Nogueira, F.F. Ambrozio, L.F.C.P. de Lima, O.C.S. Ribeiro, M. D.M. Neves, L. Boehs, R. Funaro, Key Engineering Materials, vols. 189-191, (2001), pp.401-7. Trans. Tech. Publ., Switzerland.

DOI: https://doi.org/10.4028/www.scientific.net/kem.189-191.401

[12] L. C. M. Pinto, Tese de Doutorado, IPEN-USP, SP, (1996).

[13] F.F. Ambrozio, R.A. Nogueira, L.F.C.P. de Lima, M.D.M. Neves, O.C.S. Ribeiro In: 20th Heat Treating Society Conference & Show, October 9-12, St. Louis, USA.

[14] R A. Nogueira, O.C.S. Ribeiro, M.D.M. Neves, L.F.C.P. de Lima, F.F. Ambrozio, D.N. Friedrich, L. Boehs, Materials Science Forum vols. 416-418, (2003), pp.89-94.

DOI: https://doi.org/10.4028/www.scientific.net/msf.416-418.89

Fetching data from Crossref.
This may take some time to load.