Synthesis and Characterization of NiO-8YSZ Powders by Coprecipitation Route


Article Preview

Nickel oxide – 8 mol% yttria stabilized zirconia (NiO-8YSZ) powders containing 25 to 75 wt% of NiO were prepared by coprecipitation. The entire process includes the reaction of metals aqueous chloride solutions (heated at 95 oC) with ammonium hydroxide, washing steps of the resulting gel, butanol azeotropic distillation treatment to prevent the formation of hard agglomerates, drying, calcination and ball milling. The yield of precipitation of metals was determined by inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES). Powders were characterized by X-ray and laser diffraction, infrared analysis, gas adsorption (BET) and scanning electron microscopy. It was observed that zirconium and yttrium hydroxides are easily precipitated in alkaline medium, while nickel precipitation yield is in the range of 80 to 95% due to the formation of soluble complexes. NiO appears as a second phase in synthesized powders and contributes to decreasing of specific surface area and agglomerate mean size.



Materials Science Forum (Volumes 498-499)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




W. K. Yoshito et al., "Synthesis and Characterization of NiO-8YSZ Powders by Coprecipitation Route", Materials Science Forum, Vols. 498-499, pp. 612-617, 2005

Online since:

November 2005




[1] N. Q. Minh, J. Am. Ceram. Soc. 76 (1993), p.563.

[2] EG & Services. Fuels cells handbook. US Department of Energy, Morgantown, (2000).

[3] Y. M. Park, G.M. Choi, Solid State Ionics 120 (1999) p.265.

[4] F. Tietz, F. J. Dias, D. Simwonis, D. Stöver, J. Eur. Ceram. Soc. 20 (2000), p.1023.

[5] J. E. Sundeen, R. C. Buchanan, Sensors and Actuators A63 (1997), p.33.

[6] K. A. Khor; Z. L. Dong, Y. W. Gu, Thin Solid Films 368 (2000), p.86.

[7] A. Kuzjukevics, S. Linderoth, Solid State Ionics 93 (1997), p.255.

[8] R. Wikenhoener, R. Vaβen, H. P. Buchkremer, D. Stöver, J. Mater. Sci. 34 ( 1999), p.257.

[9] J. Macek, M. Marinsek, NanoStructured Mater. 12 (1999), p.499.

[10] M. Marinsek, K. Zupan, J. Macek, J. Power Sources 86 (2000), p.383.

[11] Y. Li, Y. Xie, J. Gong, Y. Chen, Z. Zhang, Mater. Sci. Eng. B86 (2001), p.119.

[12] P. Durán, J. Tartaj, F. Capel, C. Moure, J. Eur. Ceram. Soc. 23 (2003), p.2125.

[13] M. Marinsek, K. Zupan, J. Maèek, J. Power Sources 106 (2002), p.178.

[14] S. T. Aruna, K. S. Rajam, Scripta Materialia 48 (2003), p.507.

[15] D. Segal, Key Eng. Mater. 153-154 (1998), p.241.

[16] S. V. Elinson, K. I. Petrov, Analytical chemistry of zirconium and hafnium, Ann Arbor, London, 1969, p.8.

[17] A. Abrão, Química e tecnologia das terras raras , CETEM/Cnpq, Rio de Janeiro, 1994. p.16.

[18] D. Nicholls, The chemistry of iron, cobalt and nickel, Pergamon, Oxford, 1973, p.1128.

[19] R. Acharya, T. Subbaiah, S. Anand, R. P. Das , J. Power Sources 109 (2002), p.494.

[20] M. J. Avena, M. V. Vazquez, R. E. Carbonio, C. P. de Pauli, V. A. Macagno, J. Appl. Electrochem. 24 (1994), p.256.

[21] X. Wang, H. Luo, P. V. Parkhutik, A. - C. Millan, E. Matveeva, J. Power Sources 115 (2003), p.153.

[22] C. -C. Yang, Inter J. Hydrogen Energy 27 (2002), p.1071.

Fetching data from Crossref.
This may take some time to load.