Ce0.8Gd0.2O1.9 Powders Synthesized by Co-Precipitation and Amorphous Citrate Processes


Article Preview

Powders of Ce0.8Gd0.2O1.9 were synthesized by co-precipitation and amorphous citrate routes and their compositions and structures were compared. Co-precipitation process was carried out at room temperature, while amorphous citrate synthesis was performed at 60-70 °C. The powders obtained were calcined at 700 °C for 1 h. X-ray diffraction analyses showed that a single fluorite structure was formed by both synthesis techniques. Pellets from these powders were prepared by compaction at 30 kN/cm2 and sintered at 1593 °C in air. WDS analysis confirmed the homogeneity of the pellets. The sintered pellets obtained by amorphous citrate and by coprecipitation routes showed relative densities over 97 % of the theoretical density. These results indicated that the citrate amorphous route is an interesting and simple technique to prepare gadolinium-doped ceria powders with high sinterability.



Materials Science Forum (Volumes 498-499)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




M. C. Brant et al., "Ce0.8Gd0.2O1.9 Powders Synthesized by Co-Precipitation and Amorphous Citrate Processes", Materials Science Forum, Vols. 498-499, pp. 624-629, 2005

Online since:

November 2005




[1] T. Kudo, H. Obayashi, J. Electrochem. Soc., 123 (1976), p.415.

[2] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics, 52 (1992), p.152.

[3] H. Arai, T. Kunisaki, Y. Shimizu, Seiyama, Solid State Ionics, 20 (1986), p.241.

[4] H. Yahiro, Y. Baba, K. Eguchi, H. Arai, J. Electrochem. Soc., 135 (1988), p. (2077).

[5] H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics, 36, (1989), p.71.

[6] H. Inaba, H. Tagawa, Solid State Ionics, 83 (1996), p.1.

[7] S. Wang, M. Dokiya, T. Tagawa, H. Hashimoto, Proc. of The 6th Symposium on Solid Fuel Cell, Japan, 135 (1997), p. (2077).

[8] S. Wang, H. Inaba, H. Tgawa, M. Dokiya, T. Hashimoto, Solid State Ionics, 107 (1998), p.73.

[9] A.A. Taremchenko, A.A. Valente, V.V. Kharton, I.A. Bashmakov, J. Rocha, F.M.B. Marques, Catal. Commun., 4 (2003), p.477.

[10] H.L. Tuller, A.S. Nowich, J. Electrochem. Soc., 122 (1975), p.255.

[11] K. Zheg, B.C.H. Steele, M. Sahibzada, I.S. Metcalfe, Solid State Ionics, 86-88 (1996), p.1241.

[12] G.M. Christie, F.P.F. Van Berkel, Solid State Ionics, 83 (1996), p.17.

[13] B.C.H. Steele, Solid State Ionics, 129 (2000), p.95.

[14] C. Xia, M. Liu, Solid State Ionics, 144 (2001), p.249.

[15] N.Q. Minh, J. Am. Ceram. Soc., 76 (1993), p.563.

[16] T.L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nosaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya, T. Kato, Solid State Ionics, 174 (2004), p.1637.

DOI: https://doi.org/10.1016/j.ssi.2004.06.017

[17] R.S. Torre, N.M. Sammes, G.A. Tompsett, Solid State Ionics, 111 (1998), p.9.

[18] K. Huang, M. Feng, J.B. Goodenough, J. Am. Ceram. Soc., 81 (1998), p.357.

[19] L. Riess, D. Braunshtein, D.S. Tannhauser, J. Am. Ceram. Soc., 64 (1981), p.479.

[20] A. Overs, L. Riess, J. Am. Ceram. Soc., 64 (1982), p.606.

[21] A.L. Dragoo, C.K. Chiang, Proc. of Conf. On Higth Temperature Solid Oxid Electrolytes, ed. F Salazano, Brookhaven Natonal Laboratory, Upton, USA, (1983), p.268.

[22] S.J. Hong, K. Mehta, A.V. Virkar, J. Electrochem. Soc., 145 (1998), p.638. 8.

[23] J. Van, T. Horita, T. Kawada, N. Sakai, H. Yokokaya, M. Dokiya, Ceram. Int., 24 (1998), p.229.

[24] J J. Van, T. Horita, T. Kawada, N. Sakai, H. Yokokaya, M. Dokiya, M., Solid State Ionics, 86-88 (1998), p.1255.

[25] T.S. Zhang, J. Ma, Scripta Materialia, 50 (2004), p.1127.

[26] P. Country, B. Delmon, C. Marcilly, A. Surgier, Fr Patent 1. 604. 707, (1968).

Fetching data from Crossref.
This may take some time to load.