Transmission Electron Microscopy Observations on Cu-Ti Alloy Systems

Abstract:

Article Preview

Phase separation behaviors of a quenched Cu-3.0at%Ti alloy, as well as crystallographic structures of Cu-20.7at%Ti alloy have been studied using transmission electron microscopy. The furnacecooled Cu-20.7at%Ti alloy are composed of a-Cu4Ti (Ni4Mo-type) and b-Cu4Ti (Au4Zr-type) with the orientation relationship of (011)a//(110)b, [100]a//[001]b. As-quenched Cu-3.0at%Ti alloy showed a modulated structure with the modulation length of about 4 nm. When aged at 723K for 8 hr, the a-Cu4Ti phase emerges within the modulated or tweed-like microstructure. Prolonged aging results in the growth of the a-Cu4Ti particles and the loss of coherency. It is likely that asquenched Cu-3.0at%Ti alloy decomposes spinodally at 723K, followed by polymorphous ordering; though the present study did not exclude, as an alternative path, a decomposition mechanism based on the catastrophic nucleation.

Info:

Periodical:

Edited by:

Masaaki Naka and Toshimi Yamane

Pages:

163-168

DOI:

10.4028/www.scientific.net/MSF.502.163

Citation:

R. Nishio et al., "Transmission Electron Microscopy Observations on Cu-Ti Alloy Systems ", Materials Science Forum, Vol. 502, pp. 163-168, 2005

Online since:

December 2005

Export:

Price:

$38.00

[1] S. Nagarjuna and D. S. Sarma: J. Mater. Sci., Vol. 37 (2002), p. (1929).

[2] S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki and Y. Waseda: Scripta Mater., Vol. 48 (2003), p.431.

[3] W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci., Vol. 49 (2004), p.347.

[4] R. Knights and P. Wilkes: Acta Metall., Vol. 21 (1973), p.1503.

[5] D. E. Laughlin and J. W. Cahn: Acta Metall., Vol. 23 (1975), p.329.

[6] A. Datta and W. A. Soffa: Acta Metall., Vol. 24 (1976), p.987.

[7] C. Borchers: Phil. Mag. A, Vol. 79 (1999), p.537.

[8] T. Tsujimoto, K. Hashimoto and K. Saito: Acta Metall., Vol. 25 (1977), p.295.

[9] R. P. Wahi and J. Stajer: Decomposition of Alloys: the Early Stages, P. Haasen, V. Gerold, R. Wagner and M. F. Ashby, ed., (Pergamon Press, Oxford 1984), Vol. p.165.

[10] J. W. Cahn and J. E. Hilliard: J. Chem. Phys., Vol. 28 (1958), p.258.

[11] M. Hillert: Acta Metall., Vol. 9 (1961), p.525.

[12] J. W. Cahn: Acta Metall., Vol. 9 (1961), p.795.

[13] Binary alloy phase diagrams, 2nd. ed., T. B. Massalski, ed., (ASM International, Materials Park 1990), Vol. 2, p.1494.

[14] H. U. Pfeifer, S. Bahn and K. Schubert: J. Less-Common Met., Vol. 14 (1968), p.291.

[15] J. -Y. Brun, S. -J. Hamar-Thibault and C. -H. Allibert: Z. Metallkde, Vol. 74 (1983), p.525.

[16] R. Sinclair, J. A. Leake and B. Ralph: phys. stat. sol., Vol. 264 (1974), p.285.

[17] W. A. Soffa and D. E. Laughlin: Acta Metall., Vol. 37 (1989), p.3019.

[18] A. J. Ardell and R. B. Nicholson: Acta Metall., Vol. 14 (1967), p.1295.

In order to see related information, you need to Login.