Substructure and Nanocrystalline Structure Effects in Thermomechanically Treated Ti-Ni Alloys

Abstract:

Article Preview

Substructure and structure formation as well as functional properties of thermomechanically treated Ti-Ni wire have been studied using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and mechanical. The low- temperature themomechanical treatment (LTMT) was carried out by rolling at room temperature in a true strain range e = 0.3 to 1.9. It was shown that severe plastic deformation (e=1.9) of Ti-50.0at.%Ni alloy results in partial amorphization and formation of nanocrystalline austenite structure during post-deformation annealings up to 400 °C. As a result, the fully recoverable strain and recovery stress become much higher than the values reachable after traditional LTMT (e=0.3 to 0.88) with post-deformation annealing which creates a poligonized dislocation substructure.

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Edited by:

Zenji Horita

Pages:

597-602

Citation:

K.E. Inaekyan et al., "Substructure and Nanocrystalline Structure Effects in Thermomechanically Treated Ti-Ni Alloys", Materials Science Forum, Vols. 503-504, pp. 597-602, 2006

Online since:

January 2006

Export:

Price:

$38.00

[1] Engineering Aspects of Shape Memory Alloys, Editors T.W. Duering, K.N. Melton, D. Stockel and C.M. Wayman. (Butterworth-Heinemann, England 1990).

[2] Shape Memory Materials, Editors K. Otsuka and C.M. Wayman. (Cambridge University press, England 1999).

[3] Shаре Memory Alloys: Fundamentals, Modeling and Applications, Editors V. Brailovski, S. Prokoshkin, Р. Теrrault and F. Trochu. (ЕТS Publ., Canada 2003).

[4] S.D. Prokoshkin, L.M. Kaputkina, S.A. Bondareva, O. Yu. Tikhomirova, L.P. Fatkullina, S.V. Oleinikova: Fiz. Met. Metalloved. No3 (1991), p.144.

[5] S.D. Prokoshkin, L.M. Kaputkina, I. Yu. Khmelevskaya and T.V. Morozova: Journ. Phys. IV Col. C8 (1995), p.563.

DOI: https://doi.org/10.1051/jp4/199558563

[6] S.D. Prokoshkin: Proc. Int. Symp. Shape Memory Alloys: Fundamentals, Modeling and Industrial Application, (CIM, Canada 1999), p.267.

[7] I. Yu. Khmelevskaya: Journ. Phys. IV Vol. 11 (2001), Pr 8, p.41.

[8] S.D. Prokoshkin, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu, S. Turenne, V. Yu. Turilina: Canadian Met. Quart. Vol. 43 (2004), p.95.

[9] V. Brailovski, I. Yu. Khmelevskaya, S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina, R.Z. Valiev: Phys. Met. Metallogr. Vol. 97, Suppl. 1 (2004), p.3.

[10] I. Yu. Khmelevskaya, I.B. Trubitsyna, S.D. Prokoshkin, S.V. Dobatkin, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev: Materials Sci. Forum Vol. 426-432 (2003), p.2765.

DOI: https://doi.org/10.4028/www.scientific.net/msf.426-432.2765

[11] S.D. Prokoshkin, A.V. Korotitskiy, V. Вrailovski, S. Turenne, I. Yu. Khmelevskaya, I.B. Trubitsyna: Acta Materialia Vol. 52 (2004), p.4479.

DOI: https://doi.org/10.1016/j.actamat.2004.06.007