Fabrication and Mechanical Properties of Glass Fiber/Epoxy Nanocomposites


Article Preview

This research is aimed to fabricate glass fiber/epoxy nanocomposites containing organoclay as well as to understand the organoclay effect on the in-plane shear strength of the nanocomposites. To demonstrate the organoclay effect, three different loadings of organoclay, were dispersed in the epoxy resin using mechanical mixer followed by sonication. The corresponding glass/epoxy nanocomposites were prepared by impregnating the organoclay epoxy mixture into the dry glass fiber through a vacuum hand lay-up process. Off-axis block glass/epoxy nanocomposites were tested in compression to produce in-plane shear failure. It is noted only the specimens showing in-plane shear failure mode were concerned in this study. Through coordinate transformation law, the uniaxial failure stresses were then converted to a plot of shear stress versus transverse normal stress from which the in-plane shear strength was obtained. Experimental results showed that the fiber/epoxy nanocomposite exhibit higher in-plane shear strength than the conventional composites. This increased property could be ascribed to the enhanced fiber/matrix adhesion promoted by the organoclay.



Materials Science Forum (Volumes 505-507)

Edited by:

Wunyuh Jywe, Chieh-Li Chen, Kuang-Chao Fan, R.F. Fung, S.G. Hanson,Wen-Hsiang Hsieh, Chaug-Liang Hsu, You-Min Huang, Yunn-Lin Hwang, Gerd Jäger, Y.R. Jeng, Wenlung Li, Yunn-Shiuan Liao, Chien-Chang Lin, Zong-Ching Lin, Cheng-Kuo Sung and Ching-Huan Tzeng




J. L. Tsai et al., "Fabrication and Mechanical Properties of Glass Fiber/Epoxy Nanocomposites", Materials Science Forum, Vols. 505-507, pp. 37-42, 2006

Online since:

January 2006




[1] E.T. Thostenson, C. Li and T.W. Chou: Compos. Sci. Technol. Vol. 65 (2005), p.491.

[2] T.J. Pinnavaia and G.W. Beall: Polymer-Clay Nanocomposites. John Wiley & Sons Ltd, New York (2000).

[3] P.C. LeBaron, Z. Wang and T.J. Pinnavaia: Appl. Clay Sci. Vol. 15 (1999), p.11.

[4] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito: J. Mater. Res. Vol. 8 (1993), p.1174.

[5] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi and O. Kamigaito: J. Mater. Res. Vol. 8 (1993), p.1179.

DOI: https://doi.org/10.1557/jmr.1993.1179

[6] J.W. Cho and D.R. Paul: Polymer. Vol. 42 (2001), p.1083.

[7] I.J. Chin, T. Thurn-Albrecht, H.C. Kim, T.P. Russell and J. Wang: Polymer. Vol. 42 (2001), p.5947.

[8] D. Ratna, N. Manoj, R. Varley, R.S. Raman and G. Simon: Polym. Int. Vol. 52 (2003), p.1403.

[9] K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito: J. Polym. Sci., A, Polym. Chem. Vol. 31 (1993), p.2493.

[10] H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho and D.R. Paul: Polymer. Vol. 42(23) (2001), p.9513.

[11] A. Okada and A. Usuki: Mater. Sci. and Eng. C Vol. 3 (1995), p.109.

[12] A. Haque, M. Shamsuzzoha, F. Hussain and D. Dean:J. Compos. Mater. Vol. 37 (2003), P. 1821.

[13] O. Becker, R.J. Varley and, G.P. Simon: J. Mater. Sci. Lett. Vol. 22 (2003), p.1411.

[14] Nanocor Inc., Technical data sheet.

[15] T. Liu, W.C. Tjiu, Y. Tong, C. He, S.S. Goh and T.S. Chung: J. Appl. Polym. Sci. Vol. 94 (2004), p.1236.