Thermal Analysis of the Mg-Al Alloys


Article Preview

Multi-crystalline silicon ingot casting using directional crystallisation is the most costeffective technique for the production of Si for the photovoltaic industry. Non-uniform cooling conditions and a non-planarity of the solidification front result, however, in the build-up of stresses and viscoplastic deformation. Known defects, such as dislocations and residual stresses, can then occur and reduce the quality of the produced material. Numerical simulation, combined with experimental investigation, is therefore a key tool for understanding the crystallisation process, and optimizing it. The purpose of the present work is to present an experimental furnace for directional crystallisation of silicon, and its analysis by means of numerical simulation. The complete casting procedure, i.e., including both the crystallisation phase and the subsequent ingot cooling, is simulated. The thermal field has been computed by a CFD tool, taking into account important phenomena such as radiation and convection in the melt. The transient thermal field is used as input for a thermo-elasto-viscoplastic model for the analysis of stress build-up and viscoplastic deformation during the process. Numerical analysis is employed to identify process phases where further optimisation is needed in order to reduce generated defects.



Edited by:

A Roósz, M. Rettenmayr and Z. Gácsi






J. Medved and P. Mrvar, "Thermal Analysis of the Mg-Al Alloys", Materials Science Forum, Vol. 508, pp. 603-608, 2006

Online since:

March 2006




In order to see related information, you need to Login.

In order to see related information, you need to Login.