High Temperature Chemical Interaction Between SSiC Substrates and Ag-Cu Based Liquid Alloys in Vacuo


Article Preview

The interfaces formed at 850 °C under vacuum between polished or oxidized substrates of pressureless sintered α-SiC (SSiC) and Cusil, Cusil-ABA and Incusil-ABA brazing alloys have been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. No chemical interaction is observed for Cusil on both SSiC substrates. In contrast, the Ti contained in the Cusil-ABA and Incusil-ABA alloys promotes the occurrence of chemical reactions at the metal/ceramic interface with both SSiC substrates. The formation of TiC and Ti5Si3 is observed for Cusil-ABA and Incusil-ABA on untreated SSiC, following the sequence SiC → TiC → Ti5Si3 at the metal/ceramic interface. The formation of Ti5Si3 and Cu3Ti3O, following the sequence SiC → Ti5Si3 → Cu3Ti3O, is observed for both Ti-containing alloys on pre-oxidized SSiC. During the wetting experiments, Ti5Si3 and Cu3Ti3O detach from the ceramic surface, floating away from the ceramic/metal interface into the liquid alloy, where the latter phase partially dissolves. It is concluded that for both Ti-containing alloys in contact with pre-oxidized SSiC, the Ti remaining after the reaction with the silica film is insufficient to decrease the contact angle to the values observed for untreated SSiC or to produce a strong metal/ceramic joint.



Edited by:

H. Balmori-Ramírez, M. Brito, J.G. Cabañas-Moreno, H.A. Calderón-Benavides, K. Ishizaki and A. Salinas-Rodríguez






J. López-Cuevas et al., "High Temperature Chemical Interaction Between SSiC Substrates and Ag-Cu Based Liquid Alloys in Vacuo", Materials Science Forum, Vol. 509, pp. 111-116, 2006

Online since:

March 2006




[1] G. Ervin: J. Am. Ceram. Soc. Vol. 41 (1958), p.347.

[2] J. -G. Li: Mater. Lett. Vol. 18 (1994), p.291.

[3] L. Froyen and A. Deruyttere: Proc. 4th Eur. Symp. on Materials Sciences under Microgravity (ESA, Noordwijk aan Zee, The Netherlands 1983).

[4] B. C. Allen and W. D. Kingery: AIME Trans. Vol. 215 (1959), p.30.

[5] M. W. Barsoum and P. D. Ownby: Mater. Sci. Res. Vol. 14 (Plenum Press, USA 1981).

[6] J. C. Lee, J. P. Ahn, Z. Shi, Y. Kim and H. I. Lee: Metall. Mater. Trans., Vol. 31A (2000), p.2361.

[7] Z. Shi, J. -M. Yang, J. C. Lee, D. Zhang, H. I. Lee and R. Wu: Mater. Sci. Eng. A, Vol. A303 (2001), p.46.

[8] V. Laurent, D. Chatain and N. Eustathopoulos: Mater. Sci. Eng. A, Vol. A135 (1991), p.89.

[9] J. Lopez-Cuevas, H. Jones and H. V. Atkinson: Mater. Sci. Eng. A, Vol. A266 (1999), p.161.

[10] J. López-Cuevas, H. Jones and H. V. Atkinson: J. Am. Ceram. Soc. Vol. 83 (2000), p.2913.

[11] A. G. Metcalfe: Interfaces in Metal-Matrix Composites (Academic Press, New York and London 1974).

[12] S. K. Choi, M. Chandrasekaran, and M. J. Brabers: J. Mater. Sci. Vol. 25 (1990), p. (1957).

[13] L. M. Porter, R. F. Davis, J. S. Bow, M. J. Kim, R. W. Carpenter and R. C. Glass: J. Mater. Res. Vol. 10 (1995), p.668.

[14] M. Naka, J. Feng and J. C. Schuster: Trans. JWRI Vol. 24 (1995), p.77.

[15] P. J. Meschter: Interfaces in Metal-Ceramics Composites (The Minerals, Metals and Materials Society, USA 1989).

[16] J. C. Ratliff and G. W. Powell: AFML-TR-70-42 (1970).

[17] H. Kräutle , M. -A. Nicolet and J. W. Mayer: Phys. Stat. Sol. Vol. 20A (1973), p. K33.

[18] M. Berti, A. V. Drigo, C. Cohen, J. Siejka, G. G. Bentini, R. Nipoti and S. Guerri: J. Appl. Phys. Vol. 55 (1984), p.3558.

[19] F. S. Ohuchi and M. Bortz: Proc. Int. Meeting on Adv. Mater. (MRS, USA 1989).

[20] K G Grigorov, G I Grigorov, L. Drajeva, D. Bouchier, R Sporken and R Caudano: Vacuum Vol. 51 (1998), p.153.

DOI: 10.1016/s0042-207x(98)00149-3

[21] G. P. Kelkar, K. E. Spear and A. H. Carim: J. Mater. Res. Vol. 9 (1994), p.2244.

[22] J. López-Cuevas: Ph.D. Thesis (Sheffield University, UK 1995).

[23] G. P. Kelkar and A. H. Carim: J. Amer. Ceram. Soc. Vol. 76 (1993), p.1815.

In order to see related information, you need to Login.