Influence of Molecular Weight and Crystallinity of Poly(L-Lactic Acid) on the Adhesion and Proliferation of Human Osteoblast Like Cells


Article Preview

The molecular weight and crystallinity of systems based on poly(L-lactic acid) PLLA is an important issue as it can influence, besides the general physical properties of the polymer, the patterns of cell adhesion, proliferation and cell morphology. The objective of the present study was to evaluate how crystallinity and molecular weight of PLLA influence the referred parameters. Four conditions were tested: low molecular weight amorphous and semi-crystalline PLLA disks, and high molecular weight amorphous and semi-crystalline PLLA disks, obtained from hot press. The thermal properties of the studied materials were accessed by differential scanning calorimetry. For the cell culture studies a human osteosarcoma cell line (SaOS-2) was chosen. Disks were immersed in a cell suspension containing 5x104 cells/ml and kept in culture for periods up to two weeks. Cell viability and proliferation of SaOS-2 cells was assessed by MTS test and a total protein assay, respectively. The adhesion and morphology of SaOS-2 cells on PLLA disks was assessed by scanning electronic microscopy. Results showed that cell viability was not affected by the different tested conditions. However, cell proliferation was increased in the high molecular weight amorphous samples and cells seemed to have higher adhesion patterns on semi-crystalline samples. This is probably happening due to different rates of integrin interaction with the substrate leading to different patterns of focal adhesion points formation.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




A. J. Salgado et al., "Influence of Molecular Weight and Crystallinity of Poly(L-Lactic Acid) on the Adhesion and Proliferation of Human Osteoblast Like Cells ", Materials Science Forum, Vols. 514-516, pp. 1020-1024, 2006

Online since:

May 2006




[1] A. Södegard, M. Stolt, Prog. Polym. Sci. Vol. 27 (2002), p.1123.

[2] R.C. Thomson, M. C. Wake, M. J. Yaszemski, A. G. Mikos, Adv. Polym. Sci. Vol 122 (1995), p.245.

[3] H. D. Kim, E. H. Bae; I. C. Kwon, R. R. Pal, J. D. Nam, D. S. Lee, Biomaterials Vol 25 (2004), p.2319.

[4] M. Kellomaki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, P. Tormala Biomaterials 24 (2000), p.2495.


[5] M. Navarro, M.P. Ginebra, J.A. Planell, S. Zepetelli, L. Ambrosio, J. Mater. Sci. Mater. Med. Vol 15 (2004), p.419.

[6] P.A. Gunatillake, R. Adhikari, Eur. Cell Mater. Vol 5 (2003), p.1.

[7] A. Park, L.G. Cima, J. Biomed. Mat. Res. Vol 31 (1996), p.117.

[8] K. Isama, T. Tsuchiya, Biomaterials Vol 24 (2003), p.3303.

[9] Y. Ikarashi, T. Tsuchiya, M. Kaniwa, A. Nakamura, Biolog. & Pharm. Bul. Vol 23 (2000), p.1470.

[10] D.L. Biggs, C.S. Lengsfeld, B. M. Hybertson, K. Ng, M. C- Manning, T.W. Randolph, J. Control. Rel. Vol 92 (2003), p.147.

[11] S. Iannace, L. Nicolais, J. Appl. Polym. Sci. Vol 64 (1997), p.911.

[12] T. Miyata, T. Masuko, Polymer Vol 39 (1998), p.5515.

[13] M. L. Di Lorenzo, Polymer Vol 42 (2001), p.9441.

[14] Y. Wang, J.L. Gómez Ribelles, M. Salmeron Sanchez, J.F. Mano, Macromolecules Vol 38 (2005), p.4712.

[15] H. Tsujo, Y. Ikada, Polymer (1995), p.2709.

[16] M. Reeve, S. McCarthy, M. Downey, R. Gross, Macromolecules Vol 27(1994), p.825.

[17] Cam, D.; Hyon, S.; Ikada, Y. Biomaterials 1995, 16, 833.

[18] R. MacDonald, S. McCarthy, R. Gross, Macromolecules Vol 29 (1996), p.7356.

[19] H. Tsuji, Y. Ikada Polym. Degrad. Stabil. Vol 67 (2000), p.179.

[20] J.F. Mano, Y. Wang, J.C. Viana, Z. Denchev, M.J. Oliveira, Macromol Mater Eng Vol 289 (2004), p.910.

[21] A.J. Salgado, O.P. Coutinho, R.L. Reis, Tissue Eng Vol 10 (2004), p.665.

[22] A.J. Salgado, J.E. Figueiredo, O.P. Coutinho, R.L. Reis, J. Mat. Sci. Mat. Med. Vol. 16 (2005), p.267.

[23] Y. Wang, J.F. Mano, J. Therm. Anal. Calorim Vol 80 (2005), p.171.

[24] E.W. Fischer, H.J. Srerzel, G. Wegner. Kolloid Z Z Polym Vol 251 (1973), p.980.

[25] C.M. Alves, R.L. Reis, J.A. Hunt, J. Mat. Sci. Mat. Med. Vol 14 (2003), p.157.

[26] J.G. Steele, B.A. Dalton, C.H. Thomas, K.E. Healy, T. R Gengenbach, C.D. McFarland: Bone Engineering (m squared, Canada 1999).

[27] T.A. Horbett, K.W. Cooper, K.R. Lew, B.D. Ratner J. Biomater. Sci. -Polymer Ed Vol 9 (1998), p.1071.

[28] H.M. Kowalczynska, M. Nowak-Wyrzykowska, J. Dobkowski, R. Kolos, J. Kaminski, A. Makowska-Cynka, E. Marciniak, J. Biomed. Mater. Res Vol 61 (2002), p.260.


[29] K.L. Kipadi, P.L. Chang, S.L. Bellis, J. Biomed. Mater. Res 57 (2001), p.258.