Mineralization of Titanium Substrates with Different Structures and Surface Finish, Pre-Incubated in Albumin


Article Preview

A study is reported on the influence of surface morphology, chemistry and albumin adsorption on the in vitro mineralization of titanium. Albumin is the most abundant protein in plasma and was chosen as a pre-incubation medium for titanium substrates previously conditioned by mechanical, thermal and chemical treatment. Subsequent mineralization studies were performed in carbonated simulated inorganic plasma (CSIP) physiologically buffered with CO2/HCO3 -. The results indicate that surface morphology and albumin adsorption contribute to the development of a B-carbonated apatite deposit and, furthermore, that the buffer system may alter the role of albumin in mineralization.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




S. C.P. Cachinho et al., "Mineralization of Titanium Substrates with Different Structures and Surface Finish, Pre-Incubated in Albumin", Materials Science Forum, Vols. 514-516, pp. 1049-1053, 2006

Online since:

May 2006




[1] R. M. Souto, M. M. Laz, R. L. Reis, Biomaterials 24 (2003), pp.4213-4221.

[2] V. Bichl, T. Wack, S. Winter, U. T. Seyfert, J. Breme, Biomolecular Engineering 19 (2002), pp.97-101.

[3] D. Krupa, J. Baszkiewiez, J. Kozubowski, A. Barcz, J. Sobczak, A. Bilinski, B. Rajchel, Vacuum 63 (2001), pp.715-719.

[4] S. Hiromoto, T. Hanawa, K. Asami, Biomaterials 25 (2004), pp.979-986.

[5] H. J. Oh, J. H. Lee, Y. Jeong, Y. J. Kim, C. S. Chi, Surface and Coating Technology (2004).

[6] L. A. Sena, M. C. Andrade, A. M. Rossi, G. A. Soares, J Biomed Mater Res 60 (2002), pp.1-7.

[7] D. Krupa, J. Baszkiewiez, J. W. Sobczak, A. Bilinski, A. Barecz, Journal of Materials Processing Technology 143-144 (2003), pp.158-163.

[8] P. Huang, K. W. Xu, Y. Han, Materials Letters 59 (2005), pp.185-189.

[9] E. Czarnowska, T. Wierzchon, A. M. Niedbala, Journal of Materials Processing Technology 9293 (1999), pp.190-194.

[10] K. Shibata, K. Tsuru, S. Hayakawa, A. Osaka, Key Engineering Materials 240-242 (2003), pp.55-58.

[11] A. P. Serro, A. C. Fernandes, B. Saramago, J. Lima, M. A. Barbosa, Biomaterials 18 (1997), pp.963-968.

[12] P. A. A. P. Marques, S. C. P. Cachinho, M. C. F. Magalhães, R. N. Correia, M. H. V. Fernandes, Journal of Materials Chemistry 14 (2004), pp.1861-1866.

[13] E. Conforto, B. O. Aronsson, A. Salito, C. Crestou, D. Caillard, Materials Science and Engineering C 24 (2004), pp.611-618.

[14] B. Feng, J. Weng, J. Zhao, L. He, S. Qi, X. Zhang, Key Engineering Materials 240-242 (2003), pp.323-326.

[15] P. A. A. Marques, M. C. F. Magalhães, R. N. Correia, Biomaterials 24 (2003), 1541-1548.

[16] F. H. Lin, Y. S. Hsu, S. H. Lin, T. M. Chen, Materials Chemistry and Physics 87 (2004), p.2430.

[17] R. Godley, D. Starosvetsky, I. Gotman, Journal of Materials Science: Materials in Medicine 15 (2004), pp.1073-1077.

[18] S. Areva, M. Lindén, Key Engineering Materials 240-242 (2003), pp.465-468.