Layer-by-Layer Deposition of Organically Capped Quantum Dots

Abstract:

Article Preview

Cadmium chalcogenide quantum dots (QD’s) were synthesised using a single source approach while zinc oxide QD’s were obtained by a colloidal technique. In both situations the dots were surface capped with tri-octylphosphine oxide (TOPO) hence leading to nanodispersed systems in organic solvents such as toluene. The organically capped QD’s (CdSe, CdS and ZnO) were used as building-units to fabricate LbL (layer-by-layer) films on glass and quartz substrates. A linear increase in the visible light absorbance (due to the QD’s) with the number of deposited layers indicates that multi-layered systems have been fabricated. In order to investigate the effect of the LbL manipulation on the integrity of the QD’s, comparative studies on the optical properties of the starting QD’s and the nanostructured films have been performed. The observation of quantum size effects in both cases suggests minimal degradation of the QD’s though clustering had probably occurred, a point which was further confirmed by AFM analysis.

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho

Pages:

1111-1115

DOI:

10.4028/www.scientific.net/MSF.514-516.1111

Citation:

M. C. Neves et al., "Layer-by-Layer Deposition of Organically Capped Quantum Dots", Materials Science Forum, Vols. 514-516, pp. 1111-1115, 2006

Online since:

May 2006

Export:

Price:

$38.00

[1] A. Eychmüller: J. Phys. Chem. B Vol. 104 (2000), p.6514.

[2] T. Trindade, P. O'Brien, N.L. Pickett: Chem. Mater. Vol. 13 (2001), p.3843.

[3] L. M. Liz-Marzán, P. V. Kamat (Editors): Nanoscale Materials (Kluwer Academic Publishers; Netherlands 2003).

[4] P. Jiang, J. F. Bertone, V. L. Colvin: Science Vol. 291 (2001), p.453.

[5] G. Decher, J. Smith: Prog. Colloid Polym. Sci.: Vol. 89 (1992) p.160.

[6] G. Decher: Science Vol. 277 (1997), p.1232.

[7] S. Liu, D. G. Kurth, B. Bredenkötter, D. Volkmer: J. Am. Chem. Soc. Vol. 124 (2002), p.12279.

[8] S. Liu, Z. Tang, Z. Wang, Z. Peng, E. Wang, S. Dong: J. Mater. Chem. Vol. 10 (2000), p.2727.

[9] F.L. Sousa, A.C.A.S. Ferreira, R. A. Sá Ferreira, A. M. V. Cavaleiro, L. D. Carlos, H. I. S. Nogueira, J. Rocha, T. Trindade: J. Nanosci. Nanotechnol. Vol. 4 (2004), p.214.

[10] N. A. Kotov: MRS Bulletin Vol. 26 (2001), p.992.

[11] E. R. Kleinfield, G. S. Ferguson: Science Vol. 265 (1994) p.370.

[12] T. Trindade, P. O'Brien, X. Zhang: Chem. Mater. Vol. 9 (1997) p.523.

[13] D. J. Crouch, P. O'Brien, M. A. Malik, P. J. Skabara, S. P. Wright: Chem. Commun. Vol. 12, (2003) 1454.

[14] D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, D. R. Gamelin: J. Am Chem. Soc. 125 (2003) p.13205.

[15] L. R. Becerra, C. B. Murray, R. G. Griffin, M. G. Bawendi: J. Chem. Phys. Vol. 100 (1994) p.3297.

[16] J. E. B. Katari, V. L. Colvin, A. P. Alivisatos: J. Phys. Chem. Vol. 98 (1994) p.4109.

[17] Y. Shimazaki, M. Mitsuishi, S. Ito, M. Yamamoto: Langmuir Vol. 14 (1998) 2768.

[18] E. C. Hao, T. Q. Lian: Langmuir Vol. 16 (2000) 7879. 500nm.

In order to see related information, you need to Login.