Structural Characterization of Sputtered Composite Stabilized ZrO2 Thin Films


Article Preview

Zirconia (ZrO2) exhibits three different polymorphic phases as a function of the thermal and pressure conditions (cubic, tetragonal and monoclinic). The use of zirconia coatings at high temperatures requires it to be stabilized at room temperature in order to maintain the high temperature phases when subjected to thermal cycles. For this purpose, this work reports different ways to stabilize ZrO2 coatings produced by DC reactive magnetron sputtering. We have produced stabilized ZrO2 coatings by doping with other metallic and rare earth oxides (Y2O3 and Gd2O3), depositing nanostructured ZrO2 crystallites in an amorphous Al2O3 matrix and using a ZrO2/Al2O3 nanolaminated structure. A comparative study of the coatings produced is presented along with their structural stabilization using different approaches. For the doped coatings the tetragonal or cubic phases were obtained as a function of the dopant percentage and for the nanostructured and nanolayered structures the stabilization mechanism is related to the constraining of the zirconia nanocrystallites and the capacity to maintain its size under certain value.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




A. Portinha et al., "Structural Characterization of Sputtered Composite Stabilized ZrO2 Thin Films", Materials Science Forum, Vols. 514-516, pp. 1150-1154, 2006

Online since:

May 2006




[1] William C. Maskell: Solid State Ionics Vol. 134 (2000), p.43.

[3] A. Portinha, V. Teixeira, J. Carneiro, M.G. Beghi, C.E. Bottani, N. Franco, R. Vassen, D. Stoever, A.D. Sequeira: Surf. Coat. Tech. Vol. 188-189 (2004), pp.120-128.


[3] Kyongjun An, Kakkavery S. Ravichandran, Rollie E. Dutton, Semiatin S.L.: J. Am. Ceram. Soc. Vol 82-3 (1999), p.399.

[4] Y. Taga: Mat. Sci. and Engineering C Vol. 15 (2001), p.231.

[5] H. G. Scott: J. Mat. Sci. Vol. 10 (1975), p.1522.

[6] E.M. Levin, N.F. McMurdie, Phase Diagrams for Ceramists, (Am. Ceram. Soc., Columbus, OH, p.76, 1975).

[7] Z. Ji, J.A. Haynes, M.K. Ferber, J.M. Rigsbee: Surf. Coat. Tech. Vol. 135 No. s 2-3 (2001), p.109.

[8] M. Weller, F. Khelfaoui, M. Kilo, M.A. Taylor, C. Argirusis, G. Borchardt: Sol. State Ioni. 175 (2004), p.329.

[9] A. Portinha, V. Teixeira, J. Carneiro, M.F. Costa, N.P. Barradas, A.D. Sequeira: Surf. Coat. Tech Vol. 188-189 (2004) pp.107-115.

[10] C.R. Aita, M.D. Wiggins, R. Whig, C.M. Scanlan: J. Appl. Phys. Vol. 79 No. 2 (1996), pp.1176-1178.

[11] A. Portinha, V. Teixeira, J. Carneiro, S. N. Dub and R. Shmegera: Rev. Adv. Mater. Sci. 5 (2003), p.311.

[12] F. F. Lange, J. Mat. Sci., 17, (1982), p.225.

[13] V. Teixeira, A. Monteiro, J. Duarte, A. Portinha: Vacuum Vol. J. 67 No. s 3-4 (2002), p.477.

[14] Li P., Chen I.W., Penner-Hahn J.E.: J. Am. Ceram. Soc. 77 (1994), p.1281.

[15] DJ Green, Transformation Toughening of Ceramics. CRC Press, (1989).

[16] V. Teixeira, M. Andritschky: High Temp. -High-Press. Vol. 5 (1993), p.213.

[17] S.B. Qadri, C.M. Gilmore, C. Quinn, E. F. Skelton, C.R. Gosset: J. Vac. Sci. Technol. A7(3) (1989), p.1220.

[18] M.A. Schofield, C.R. Aita, P.M. Rice, M. Gajdardziska-Josifovska: Thin Solid Films Vol. 326 (1998), p.117.