Electrolytical Obtaining of Ni-Mo Coatings with Polypyrrole


Article Preview

Electrolytic coatings Ni-Mo with PPy were obtained by electrodeposition and electropolymerization from a galvanic bath containing Ni2+, MoO4 2–, ClO4 – ions and pyrrole (Py). The cyclic chronovoltamperommetric curve was used to determine the potential and current density of electrodeposition process. As the electropolymerization is anodic process while the electrodeposition is cathodic one, the electrode was working alternately as anode and cathode. The process was conducted under alternating potentiostatic or galvanostatic conditions. Comparative tests were carried out for Ni-Mo alloy. The results of structural investigation of the obtained coatings by the X-ray diffraction method show, the Ni-Mo layers are nanocrystalline solid solution of molybdenum in nickel (α phase), whereas the Ni-Mo+PPy coatings are characterized by decreased peaks coming from Ni-Mo base. Surface morphology of obtained Ni-Mo+PPy and Ni-Mo coatings was investigated by scanning microscope. It was stated, that the coatings obtained by alternating potentiostatic method exhibit multilayer character, whereas the coatings obtained under alternating galvanostatic conditions are characterized by the presence of Ni-Mo nanoagglomerates plated on polymer surface.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




J. Niedbała et al., "Electrolytical Obtaining of Ni-Mo Coatings with Polypyrrole", Materials Science Forum, Vols. 514-516, pp. 1176-1181, 2006

Online since:

May 2006




[1] Bełtowska-Lehman E., Chassaing E., J. of Applied Electrochemistry, Iss 5, Vol. 27 (1997), pp.568-572.

DOI: https://doi.org/10.1023/a:1018450729165

[2] Zeng Y., Yao S.W., Cao X.Q., Huang X.H., Zhong Z.Y., Guo H.T., Chinese Journal of Chemistry, Iss3, Vol. 15 (1997), pp.193-200.

[3] J. Niedbała, M. Popczyk, A. Budniok, E. Łągiewka, 4 th Kurt Schwabe Corrosion Symposium, Mechanisms of Corrosion Prevention Proceedings, Helsinki University of Technology, Espoo, Finland, 13-17 June (2004), p.195.

[4] M. Popczyk, J. Niedbała, , A. Budniok, E. Łągiewka, 4 th Kurt Schwabe Corrosion Symposium, Mechanisms of Corrosion Prevention Proceedings, Helsinki University of Technology, Espoo, Finland, 13-17 June (2004), p.202.

[5] Jakšic J.M., Vojnovic M.V., Krstajic N.V., Electrochim. Acta, 45 (2000), p.4151.

[6] I. Zhitomirsky, Sufr. En., 20(1) (2004), p.43.

[7] R. Rajagopalan, J.O. Iroh, Surf. Eng., 18 (2002), p.59.

[8] AM. Fenelon, C.B. Breslin, Electrochim. Acta, 47 (2002), p.4467.

[9] G.S. Akundy, J.O. Iroh, Polymer, 42 (2001), p.9665.

[10] J. Niedbała, I. Napłoszek-Bilnik, A. Budniok, Acta Metall. Slov., 10 2 (2004), p.220.

[11] O. Ouerghi, A. Touhami, N. Jaffrezic-Renault, C. Martelet, H.B. Ouada, S. Cosnier, IEEE Sens.J., 4(5) (2004), p.559.

DOI: https://doi.org/10.1109/jsen.2004.832858

[12] M. Onoda, Y. Kato, H. Shonaka, K. Tada, Transaction of the Institute of Electrical Engineers of Japan, Part A, 124 A(2) (2004), p.120.

[13] H. Korri-Youssoufi, F. Garnier, P. Srivastava, P. Godillot, A. Yassar, J. Chem. Soc., 119 (1997), p.7388.

[14] M. Zhou, J. Heinze, Electrochim. Acta 44 (1999), p.1733.

[15] W. Su, J.O. Iroh, J. Appl. Polym. Sci., 65(30) (1997), p.417.

[16] F. Beck, R. Michaelis, F. Schloten, B. Zinger, Electrochim. Acta, 34 (1994), p.229.

[17] J.O. Iroh, W. Su, J. Appl. Polym. Sci., 71 (1999), p. (2075).

[18] K.M. Cheung, D. Bloor, G.C. Stevens, Polymer Physic Group Conference, (1987), p.9.

[19] B. Sari, M. Talu, Synth. Met., 94 (1998), p.221.

[20] W. Su, J.O. Iroh, Electrochim. Acta, 44 (1999), p.2173.

[21] G. Torres-Gomez, P. Gomez-Romero, Synth. Met. 98 (1998), p.95.

[22] M.A. Malik, M.T. Gałkowski, H. Bala, B. Grzybowska, P.J. Kulesza, Electrochim. Acta, 44 (1999), p.2157.

[23] H. Hammache, L. Makhloufi, B. Saidani, Corr. Sci., 45 (2003), p. (2031).

[24] J. Niedbała, K. Wykpis, A. Budniok, E. Łągiewka, Archiwum Nauki o Materiałach, 2, 123, (2002).

[25] E. Łągiewka, A. Budniok, J. Niedbała, Archiwum . Nauki o Materiałach, 2, 137, (2002).