Laser Sintering of BaTiO3 Ceramics Obtained from Nanometric Powders


Article Preview

We have studied the synthesis and sintering of BaTiO3 (BTO) nanometric powders produced by Pechini technique. A laser sintering procedure was applied to the BTO and its major advantage was the quickness of the processing. We have used the radiation of a CO2 laser (CW – 100 W) as the heating source. A linear rate of irradiation was applied to avoid macroscopic defects. The calcined powder at 800°C presented a single crystalline phase confirmed by the XRD and a crystallite size of 20 nm. BTO ceramics sintered at Pmax = 7.0 W/mm2 for 10 min of irradiation showed a high relative density (98 ± 1) % with an average grain size of 400 nm for a total time of sintering of 40 minutes.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




R. S. da Silva and A. C. Hernandes, "Laser Sintering of BaTiO3 Ceramics Obtained from Nanometric Powders", Materials Science Forum, Vols. 514-516, pp. 1216-1220, 2006

Online since:

May 2006




[1] B.H. Mussler: American Ceramic Society Bulletin, 80 (6) (2000), pp.63-64.

[2] V. Buscaglia V., M. Vivani, M.T. Buscaglia, et al.: Powder Technology, 148 (2004), pp.24-27.

[3] Z. Zhao, V. Buscaglia, M. Viviani, et al.: Physical Review B, 70 (2004), pp.024107-1.

[4] L. Mitoseriu, C. Harnagea, P. Nanni, et al: Applied Physics Letters, 84 (13) (2004), p.24182420.

[5] K. Oonishi, T. Morohashi, K. Uchino: Journal of the Ceramic Society of Japan, 97 (4) (1989), pp.473-477.

[6] Y. Hirata, A. Nitta, S. Sameshima, Y. Kamino: Materials Letters, 29 (4-6) (1996), pp.229-234.

[7] Z.S. Macedo, A.C. Hernandes: Materials Letter, 55 (4) (2002), pp.217-220.

[8] Z.S. Macedo, M.H. Lente, J.A. Eiras, A.C. Hernandes: Journal of Physics-Condensed Matter, 16 (16) (2004), pp.2811-2818.

[9] Z.S. Macedo, A.C. Hernandes: Journal of the American Ceramic Society, 85 (7) (2002), pp.1870-1872.

[10] Z.S. Macedo, R.S. Silva, M.E.G. Valerio, et al.: Journal of the American Ceramic Society, 87 (6) (2004), pp.1076-1081.

[11] Z.S. Macedo, R.S. Silva, M.E.G. Valerio, et al.: Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 218 (2004), pp.153-157.


[12] M. P. Pechini, U.S. Patent nº 3, 330. 697 (1967).

[13] P.A. Lessing: Ceramic Bulletin, 68 (5) (1989), pp.1002-1007.

[14] E.D. Case J.R. Smyth, V. Monthei: Communications of the American Ceramic Society, 64 (2) (1981), p. C24-C25.

[15] P. Durán, F. Capel, J. Tartaj, C. Moure: Journal of Materials Research, 16 (1) (2001), p.197209.

[16] G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S. Cheong: Journal of Physical Chemistry, 97 (1993), pp.2368-2377.

[17] H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, Wiley, New York, (1954).

[18] I. -W. Chen, X.H. Wang: Nature, 404 (2000), pp.168-171.