Structural, Electrical and Dielectric Properties of Uranium Doped Barium Titanate


Article Preview

The influence of uranium doping up to 2 at. % on grain size, electrical resistivity and dielectric constant of barium titanate ceramics has been investigated. The samples were prepared by the conventional ceramic technique using pure raw materials. The mixed oxides were calcined at 1100 oC. The pressed pellets were sintered at temperatures between 13001500 oC in controlled atmosphere of argon and oxygen. The electrical resistivity drastically decreased, from 109 to 103 cm, with increasing uranium content up to 1.5 at. % and increased thereafter to about 107 cm, for 2 at. % U. The dielectric constant slightly increased with increasing U-content, up to about 1 at. % U and then shows a sudden increase with about two orders of magnitude, having a sharp maximum at 1.5 at. % U, when sintered in argon atmosphere compared to only half an order of magnitude when sintered in oxygen atmosphere. The results are discussed in terms of the possible A and B sites occupied by uranium as well as the boundary layer enriched with vacancies.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




C. Miclea et al., "Structural, Electrical and Dielectric Properties of Uranium Doped Barium Titanate", Materials Science Forum, Vols. 514-516, pp. 1269-1273, 2006

Online since:

May 2006




[1] Z. He, J. Ma, Y. Qu, X. Feng: J. Eur. Cer. Soc. 22 (2002), pp.2143-1248.

[2] J. Zhao, H. Zhang, J. Han: J. Funct. Matter. 30 (1999), pp.170-171.

[3] D. Voeltzke, H. Abicht, E. Pippel, J. Woltersdorf: J. Eur. Cer. Soc. 20 (2000), pp.1663-1669.

[4] J. Hwang, S. Choi, Y. Han: Jap. J. Appl. Phys. 40 (2001), pp.4952-4955.

[5] D. Kang, M. Han, S. Lee, S. Song: J. Eur. Cer. Soc. 23 (2003), pp.515-518.

[6] L. Wu, Y. Chen, Y. Chou, Y. Tsai, Y. Chu: Jap. J. Appl. Phys. 38 (1999), pp.5154-5161.

[7] M. Viviani, M. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, D. Vladikova: J. Eur. Cer. Soc. 24 (2004), pp.1221-1225.


[8] S. Urek, M. Drofenik: J. Eur. Cer. Soc. 19 (1999), pp.913-916.

[9] Z. He. J. Ma, Y. Qu, C. Wang: J. Eur. Cer. Soc. 24 (2004), pp.2123-2127.

[10] Z. Li, B. Bergman: J. Eur. Cer. Soc. 25 (2005), pp.441-445.

[11] W. Haywang: Sol. State Electronics 3 (1961), pp.51-58.

[12] W. Haywang: J. Am. Cer. Soc. 47 (1964), pp.484-490.

[13] G. H. Jonker: Sol. State Electronics 7 (1964), pp.895-903.

[14] J. Daniels, K. Hardtl, D. Hennings, R. Wernicke: Philips. Res. Repts. 31 (1976), pp.487-559.

[15] C. Gillot, J. Michenaud, I. Baukens, P. Duvigneaud: J. Am. Cer. Soc. 80 (4) (1997), p.1043.

[16] C. Homes, T. Voight, et al.: Phys. Rev. B67, (2003), p.092106.

[17] P. Lunkenheimer, V. Bobnar et al.: Phys. Rev. B66, (2002), p.052105.

[18] N. Kolev, R. Bontchev et al: Phys. Rev. B66 (2002), p.132102.

[19] L. He, J. Neaton, M. Cohen, D. Vanderbilt: Phys. Rev. B65 (2002), p.214112.

[20] H. Kishi, N. Kohzu et al.: Jap. J. Appl. Phys. 38 (1999), pp.5452-5456.

[21] S. Desu, D. Payne, J. Am. Cer. Soc. 73 (1990), pp.3407-3411.