Characterization of n-Type:ZnO:Al Films Grown by Magnetron Sputtering


Article Preview

ZnO is a wide band gap semi-conductor that has attracted tremendous interest for its potential applications in optoelectronic, solar cell, gas detection … In this work, aluminium doped zinc oxide (ZnO:Al) films were deposited by RF magnetron sputtering on glass substrates with different RF power densities of 1.2, 2.5, 3.7 and 4.9 W/cm2. We notice that the films grown at 1.2 W/cm2 were very thin and their physical properties were not precisely determined. The electrical properties of ZnO films were investigated using the impedance spectroscopy technique in the frequency range from 5 Hz to 13 MHz. The impedance data, represented by Nyquist diagrams showed that the resistivity of the films changed during the first three months after deposition. The deposited films show good optical transmittance (over 80 %) in the visible and near infrared spectra. The band gap is around 3 eV and decreases with the increasing of the RF power density (from 3.35 to 3.05 eV). The results of this study suggest that the variation of the RF power density used for deposition allow the control of the electrical and optical properties of the films



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




F. Chaabouni et al., "Characterization of n-Type:ZnO:Al Films Grown by Magnetron Sputtering", Materials Science Forum, Vols. 514-516, pp. 1358-1362, 2006

Online since:

May 2006




[1] S.H. Keshmiri, M. Rezaee Rokn-Abadi: Thin Solid Films Vol. 382 (2001), p.230.


[2] Uwe Rau, Marion Schmidt: Thin Solid Films Vol. 387 (2001), p.141.

[3] L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev: Thin Solid Films Vol. 428 (2003), p.257.


[4] R.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes: J. Appl. Phys. Lett. Vol. 82 (2003), p.1117.

[5] N. Oleynik, M. Adam, et al., J. Cryst. Growth Vol. 248 (2003), p.14.

[6] Yuantao Zhang, Guotong Du, et al., J. Cryst. Growth Vol. 252 (2003), p.180.

[7] B.J. Lokhande, P.S. Patil, M.D. Uplane, Materials Letters Vol. 57 (2002), p.573.

[8] S. A. Studenikin, Nickolay Golego, and Michael Cociveraa: J. Applied Physics Vol. 87(2000), p.2413.

[9] Chen Shaoqiang, Zhang Jian, Feng Xiao, Wang Xiaohua, Luo laiqiang, Shi Yanling, Xue Qingsong, Wang Chang, Zhu Jianzhong, Zhu Ziqiang : Applied Surface Science Vol. 241 (2005), p.384.


[10] Jin-Hong Lee, Byung-OK Park: Thin Solid Films Vol. 426 (2003), p.94.

[11] N. Al-Dahoudi, M.A. Aegerter: J. Sol-Gel Sci. Technol. Vol. 26 (2003), p.693.

[12] Masashi Matsumura, Renato P. Camata: Thin Solid Films Vol. 476 (2005), p.317.

[13] Hideaki Agura, Akio Suzuki, Tatsuhiko Matsushita, Takanori Aoki, Masahiro Okuda: Thin Solid Films Vol. 445 (2003), p.263.


[14] H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay: J. Crystal Growth Vol. 268 (2004), p.596.

[15] Su-Shia Lin, Jow-Lay Huang, Ding-Fwu Lii: Surface and Coatings Technology Vol. 176 (2004), p.173.


[16] Woon-Jo Jeong, Gye-Choon Park: Solar Energy Materials & Solar Cells Vol. 65 (2001), p.37.

[17] K.C. Park, D.Y. Ma, K.H. Kim: Thin Solid Films Vol. 305 (1997), p.201.

[18] H. Kima, U, A. Piqueb, J.S. Horwitzb, H. Muratab, Z.H. Kafafib, C.M. Gilmorea, D.B. Chrisey: Thin Solid Films Vol. 377-378 (2000), p.798.

[19] L.V. Azaroff: Elements of X-ray Crystallography (McGraw-Hill, New York 1968).

[20] F. Chaabouni, master thesis, Ecole Nationale d'Ingénieurs de Tunis, (2002).

[21] R. Swanpoel: J. Phys. E Vol. 16 (1983), p.1214.

[22] S. Zhu, C-H. Su, S.L. Lehoczky, P. Peters, M.A. George: J. Cryst. Growth Vol. 211 (2000), p.106.