Stabilisation of CuO Aqueous Suspensions


Article Preview

Obtaining ceramic bodies with enhanced mechanical properties via colloidal processing requires efficient dispersion of the ceramic powders. In this work, the dispersive effect of three low molecular weight quaternary ammonium hydroxides with different alkyl groups upon stabilisation of CuO aqueous suspensions is studied and compared with that of Tiron, a compound based on the benzene molecule. The purpose is to illustrate the effect of molecular structure, size and charge location upon dispersing effectiveness. To access these parameters, rheological and electrophoretic measurements using both bare and surface charge modified CuO were made. Tiron® revealed to be the most efficient dispersant for CuO in water, rendering viscosity values below 1 Pa⋅s and the highest variation in zeta potential amplitude.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




M. Guedes et al., "Stabilisation of CuO Aqueous Suspensions", Materials Science Forum, Vols. 514-516, pp. 1369-1373, 2006

Online since:

May 2006




[1] E. Carlström: An Overview. In R. J. Pugh and L. Bergström: Surface and Colloid Chemistry in Advanced Ceramics Processing (Marcel Decker, N. Y. 1994).

[2] R. G. Horn: Particle Interaction in Suspensions. In R. Terpstra, P. Pex and A. H. de Vries: Ceramic Processing (Chapman & Hall, London 1995).

[3] F. Lange, B. V. Velamakanni, J. C. Chang and D. S. Pearson: J. Am. Ceram. Soc. Vol. 72 (1989) p.3.

[4] R. Moreno: Am. Ceram. Soc. Bull. Vol. 71 (1992) p.1521.

[5] R. G. Horn: J. Am. Ceram. Soc. Vol. 73 (1990) p.1117.

[6] W. R. Cannon, R. Becker and K. R. Mikeska, In M. -F. Yan et al.: Advances in Ceramics, vol. 26: Ceramic Substrates and Packages for Electronic Application (ACerS, Ohio 1989).

[7] P. Tomasik, C.H. Schilling, R. Jankowiak and J.C. Kim: J. Eur. Ceram. Soc. Vol. 23 (2003) p.913.

[8] A. J. Millán, M. I. Nieto and R. Moreno: J. Am. Ceram. Soc. Vol. 84 (2001) p.62.

[9] J. S. Reed: Principles of Ceramic Processing (John Wiley, N. Y. 1995).

[10] H. Fan, L. Yang, X. Wu, Z. Wu, S. Xie and B. Zou: Nanotechnology Vol. 15 (2004) p.37.

[11] C. -C. Li and M. -H. Chang: Mater. Lett. Vol. 58 (2004) p.3903.

[12] G. Tarí, J. M. F. Ferreira and O. Lyckfeld: J. Eur. Ceram. Soc. Vol. 18 (1998) p.479.

[13] C. Pagnoux, M. Serantoni, R. Laucournet, T. Chartier and J. -F. Baumard: J. Eur. Ceram. Soc. Vol. 19 (1999) p. (1935).

[14] M. Guedes, A. C. Ferro and J. M. F. Ferreira: Mater. Sci. Forum Vol. 455-456 (2004) p.631.

[15] G. Tarí, J.M.F. Ferreira, A.T. Fonseca and O. Lyckfeld: J. Eur. Ceram. Soc. Vol. 18 (1998) p.249.

[16] C. H. Schilling and I. A. Aksay: Slip Casting. In Ceramics and Glasses, Engineered Materials Handbook, Vol. 4. (ASM, Ohio 1991). Dispersant IEP σmax No dispersant 7. 9 4. 0 TMHA 7. 5 3. 6 TEHA 6. 4 1. 3 TBHA 9. 3 2. 7 Tiron ® 4. 0 1. 2 Table 3. pH value at the isoelectric point (IEP) for each dispersant (σmax: maximum standard deviation value for the zeta potential measures on each curve).

Fetching data from Crossref.
This may take some time to load.