TEM and XRD Investigation of MnO2 Microstructure and its Influence on ESR of Ta Capacitors


Article Preview

The development of solid electrolytic tantalum capacitors with MnO2 as counter electrode has been carried out in order to decrease the equivalent series resistance (ESR). Capacitor samples produced under different pyrolysis conditions have been characterized in terms of equivalent circuit parameters. The Ta/Ta2O5/MnO2 system has also been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). X-ray powder diffraction patterns obtained were inconclusive due to the MnO2 complex structure and to the presence of highly intense tantalum peaks that shadow interesting MnO2 diffraction peaks. Electron diffraction TEM results enabled the characterization of the microstructure and furthermore revealed the complex crystalline structure that affects the electrical properties of the semiconductor layer. A relation between the calculated circuit parameters and microstructure of MnO2 is discussed.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




D. Dias et al., "TEM and XRD Investigation of MnO2 Microstructure and its Influence on ESR of Ta Capacitors", Materials Science Forum, Vols. 514-516, pp. 269-273, 2006

Online since:

May 2006




[1] J.R. Reynolds, F. Larmat and Y-J. Qui: Synth Met Vol. 79 (1996), p.229.

[2] P. Vasina, T. Zednicek, J. Sikula and J. Pavelka: Microelectron Reliab Vol. 42 (2002), p.849.

[3] Y. Kudoh, K. Akami and Y. Matsuya: Synth Met Vol. 102 (1999), p.973.

[4] I. Horacek, L. Marek, J. Tomasko, T. Zednicek S. Zednicek: Proc. CARTS (2004), p.275.

[5] N. Xiong: Thèse présentée à l'Université de Bordeaux I pour obtenir le titre de Docteur (1990).

[6] L. Hill and A. Verbaere: J Solid State Chem, Vol. 177 (2004), p.4706.

[7] J-R. Hill, C. Freeman and M. Rossouw: J Solid State Chem Vol. 177 (2004), p.165.

[8] C. Julien and M. Massot: Mater Sci Eng B Vol. 97 (2003), p.217.

[9] D.B. Rogers, R.D. Shannon, T.P. Sleight and R. Gillson: Inorg Chem Vol. 8 (1969), p.845.

[10] J.M. Albella, L. F. -Navarrete and J.M. M. -Duart: J Electrochem Soc Vol. 127 (1980), p.2180.

[11] K.D. Rogers and D. Cossins: Powder Diffr Vol. 8 (1993), p.18.

[12] J. Brenet and N. Busquére: C R Acad Sci Vol. 230 (1950), p.1767.

[13] S.S. Wiley and H.T. Knight: J Electrochem Soc Vol. 111 (1964), p.656.

[14] L. Pons and J. Brenet: C R Acad Sci Vol. 259 (1964), p.2825.

[15] R.M. McKenzie: Mineral Mag (1971); Vol. 38; p.493.

[16] K-J. Euler and R. Kirchhof: Electrochim Acta Vol. 26 (1981), p.1383.

[17] T.J.W. Bruijn, W.A. De Jong and P.J. Van Den Berg: Thermochim Acta Vol. 45 (1981), p.265.

[18] F.C. Montoliu and R.C. Font: Rev Metal Vol. 14 (1978), p.299.

[19] A.A. Bolzan, C. Fong, B.J. Kennedy and C. J. Howard: Aust J Chem Vol. 46 (1993), p.939.

[20] Y. Chabre and J. Pannetier: Prog Solid St Chem Vol. 23 (1995), p.1.

[21] P.M. De Wolff: Acta Cryst Vol. 12 (1959), p.341.

[22] D.G. Malpas, F.L. Tye: Handbook of Manganese Dioxides, Battery grade, Chapter V (D. Glover, B.J.R. Schumm, A. Kozawa, eds. IBA Inc. & JEC Press Inc., Brunswick 1989).

[23] D. Dias, P.A. Carvalho, A. Ferro, W. Lohwasser: Submitted to Acta Materialia. Figure 7 Bright field image and electron powder diffraction of an amorphous MnO2 region.