Three-Dimensional Dispersion of Nano-Fillers in Soft Composite as Revealed by Transmission Electron Microscopy/Electron Tomography (3D-TEM)


Article Preview

. Generally rubber products are a typical soft material, and a composite of a nano-filler (typically, carbon black or particulate silica) and a rubber (natural rubber and various synthetics are used). The properties of these soft nano-composites have been well known to depend on the dispersion of the nano-filler in the rubbery matrix. The most powerful tool for the elucidation of it has been transmission electron microscopy (TEM). The microscopic techniques are based on the projection of 3-dimensional (3D) body on a plane (x, y plane), thus the structural information along the thickness (z axis) direction of the sample is difficult to obtain. This paper describes our recent results on the dispersion of carbon black (CB) and particulate silica in natural rubber (NR) matrix observed by TEM combined with electron tomography (3D-TEM) technique, which enabled us to obtain images of 3D nano-structure of the sample. Thus, 3D images of CB and silica in NR matrix are visualized and analyzed in this communication. These results are precious ones for the design of soft nano-composites, and the technique will become an indispensable one in nanotechnology.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




S. Kohjiya "Three-Dimensional Dispersion of Nano-Fillers in Soft Composite as Revealed by Transmission Electron Microscopy/Electron Tomography (3D-TEM)", Materials Science Forum, Vols. 514-516, pp. 353-358, 2006

Online since:

May 2006





[1] A. D. Roberts, ed.: Natural Rubber Science and Technolgy (Oxford University Press, Oxford 1988).

[2] G. Kraus, ed.: Reinforcement of Elastomers (Interscience Publishers, New York 1965).

[3] S. Kohjiya, K. Murakami, S. Iio, T. Tanahashi and Y. Ikeda: Rubber Chem. Technol. Vol. 74 (2001), p.16, and the preceding papers cited therein.

[4] W. M. Hess: in Ref. 2, Chapter 6.

[5] J. Frank, ed.: Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (Plenum Press, New York 1992).

[6] K. P. De Jong and A. J. Koster: CHEMPHYSCHEM Vol. 3 (2002), p.776.

[7] M. Weyland: Topics in Catalysis Vol. 21 (2002), p.175.

[8] K. Yamauchi, K. Takahashi, H. Hasegawa, H. Iatrou, N. Hadjichristidis, T. Kaneko, Y. Nishikawa, H. Jinnai, T. Matsui, H. Nishioka, M. Shimizu and H. Furukawa: Macromolecules Vol. 36 (2003), p.6962.


[9] Y. Ikeda, A. Kato, J. Shimanuki and S. Kohjiya: Macromol. Rapid. Commun. Vol. 25 (2004), p.1186.

[10] M. Weyland and P. A. Midgley: Materials Today, Dec. 2004, p.32.

[11] P. A. Midgley, M. Weyland, J. M. Thomas and B.F. G. Johnson: Chem. Commun. (2000), p.907.

[12] P. A. Midgley and M. Weyland: Ultramicroscopy Vol. 96(2003), p.413.

[13] M. Tsuji and S. Kohjiya: Prog. Polym. Sci. Vol. 20 (1995), p.259.

[14] The IMOD Home Page (http: /bio3d. colorado. edu/imod/index. html), Boulder Lab. For 3D Electron Microscopy of Cells.

[15] J. R. Kremer, D. N. Mastronarde and R. Mcintosh: J. Struct. Biol. Vol. 116 (1996), p.71.

[16] D. N. Mastronarde: J. Struct. Biol. Vol. 120 (1997), p.343.

[17] K. Dierksen, D. Typke, R. Hegerl, A. J. Koster and W. Baumeister: Ultramicroscopy Vol. 40 (1992), p.71.


[18] A. J. Koster, H. Chen, J. W. Sedat and D. A. Agard: Ultramicroscopy Vol. 46 (1992), p.207.

[19] The TGS Home Page (http: /tgs. com).

[20] S. Yamamoto, S. Hamada, T. Nishino, S. Azemoto, H. Naito, T. Johkoh, M. Takahashi, Y. Ogata and S. Nakanishi: Nippon Hoshasen Gijutsu Gakkai-shi (J. Radiol. Technol., Japan) Vol. 58 (2002), p.700.


[21] N. Nango and K. Takeuchi: KINZOKU (Metals, Japan) Vol. 67 (1997), p.653.

[22] N. Probst, in Carbon Black, 2nd ed., edited by J. B. Donnet, R. C. Bansal and M. J. Wang (Dekker, New York 1993), Chapter 8.

[23] K. Yurekli, R. Krishnamoorti, M. F. Tse, K. O. Mcelrath, A. H. Tsou and H. C. Wang: J. Polym. Sci.: Part B: Polym. Phys. Vol. 39 (2001), p.256.

Fetching data from Crossref.
This may take some time to load.