Joining of Gamma-Based Titanium Aluminides – A Review

Abstract:

Article Preview

The optimisation of joining technologies is essential to the application of advanced materials in the design of parts and devices. The development of intermetallic compounds, as structural materials, inevitably requires a new approach to join these compounds to themselves or to other materials. Among different intermetallic classes, titanium aluminides are one of the most studied. However, the industrial application is far from being proportional to the research, due to different problems, where joining processes have an important role. The present paper highlights the state of art on joining γ-TiAl alloys. A review is presented with special emphasis on solid-state diffusion bonding process, because it seems to be the most suitable technique to produce high quality joints of advanced materials. The influence of the bonding conditions on the physical and mechanical properties of the joints is highlighted and the introduction of single or multiple interlayers to assist in the bonding process is discussed. A novel approach developed by the authors to the solid-state diffusion bonding of γ-TiAl alloys using Ti/Al multilayer thin films as bonding materials is proposed. The improvement of the solid-state diffusion bonding will induce sound joints at lower temperatures or pressures.

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho

Pages:

483-489

DOI:

10.4028/www.scientific.net/MSF.514-516.483

Citation:

A. S. Ramos et al., "Joining of Gamma-Based Titanium Aluminides – A Review", Materials Science Forum, Vols. 514-516, pp. 483-489, 2006

Online since:

May 2006

Export:

Price:

$35.00

[1] Y-W. Kim: J. Met. Vol. 46 (1994), p.30.

[2] C. Suryanarayana and F.H. Froes: Mater. Sci. Eng. Vol. A179/180 (1994), p.108.

[3] F.H. Froes, C. Suryanarayana and D. Eliezer: J. Mater. Sci. Vol. 27 (1992), p.5113.

[4] S-C. Huang and J.C. Chesnutt: Intermetallic Compounds - Principles and Practice, Vol. 2 (John Wiley, England 1995).

[5] E.A. Loria: Intermetallics Vol. 9 (2001), p.997.

[6] M. Asta, D. Fontaine and M. Schilfgaarde: J. Mater. Res. Vol. 8 (1993), p.2554.

[7] G. Çam and M. Koçak: Int. Mater. Rev. Vol. 43 (1998), p.1.

[8] Y. Nakao, K. Shinozaki and M. Hamada: ISIJ International Vol. 31 (1991), p.1260.

[9] P. Yan and E.R. Wallach: Intermetallics Vol. 1 (1993), p.83.

[10] Y. Mizuhara and M. Naoya: Mater. Trans. JIM Vol. 41 (2000), p.429.

[11] M.C. Chaturvedi, N.L. Richards and Q. Xu: Mater. Sci. Eng. Vol. A240 (1997), p.605.

[12] R.A. Patterson, P.L. Martin, B.K. Damkroger and L. Christodoulou: Weld. J. Vol. 69 (1990), p. S39.

[13] R.A. Patterson and B.K. Damkroger: Proc Symp on Weldability of Materials (ASM International, USA 1990).

[14] M. Holmquist, R. Recina, J. Ockborn, B. Pettersson and E. Zumalde: Scripta Mater. Vol. 39 (1998), p.1101.

DOI: 10.1016/s1359-6462(98)00274-7

[15] P.L. Threadgill: Mater. Sci. Eng. Vol. A192/193 (1995), p.640.

[16] T. Miyashita and H.J. Hino: Japan Int. Met. Vol. 58(2) (1994), p.215.

[17] W. Glatz and H. Clemens: Intermetallics Vol. 5 (1997), p.415.

[18] D. Travessa, M. Ferrante and G. Ouden: Mater. Sci. Eng. Vol. A337 (2002), p.287.

[19] B. Derby and E.R. Wallach: Met. Sci. Vol. 16 (1982), p.49.

[20] R.M. Imayev, O.A. Kaibyshev and G.A. Salishchev: Acta Metall. Mater. Vol. 40 (1992), p.581.

[21] G. Çam and M. Koçak: J. Mater. Sci. Vol. 34 (1999), p.3345.

[22] S.P. Godfrey, P.L. Threadgill and M. Strangwood: J. Physique IV Vol. 3(C7) (1993), p.485.

[23] R.Y. Lutfullin, R.M. Imayev, O.A. Kaibyshev, F.N. Hismatullin and V.M. Imayerv: Scripta Metall. Mater. Vol. 33(9) (1995), p.1445.

[24] R.Y. Lutfullin and O.A. Kaibyshev: Mater. Sci. Forum Vol. 243-245 (1997), p.681.

[25] G. Çam, J. Mullauer and M. Koçak: Sci. Technol. Welding Joining Vol. 2(5) (1997), p.213.

[26] G. Çam, H. Clemens, R. Gerling and M. Koçak: Intermetallics Vol. 7 (1999), p.1025.

[27] G. Çam, H. Clemens, R. Gerling and M. Koçak: Z. Metallkd. Vol. 90 (1999), p.284.

[28] C. Buque and F. Appel: Z. Metallkd Vol. 93 (2002), p.784.

[29] E.L. Hall and S-C. Huang: J. Mater. Res. Vol. 4(3) (1989), p.595.

[30] W.A. Baeslack, H. Zheng, P.L. Threadgill, B.G.I. Dance: Mater. Character. Vol. 39 (1997), p.43.

[31] M. Gremand, M. Garrard and W. Kurz: Acta Metall. Vol. 38 (1990), p.2587.

[32] G.Q. Wu, Z. Huang, Z.F. Li and Z.J. Ruan: Mater. Letters Vol. 57 (2003), p.3810.

[33] G.Q. Wu and Z. Huang: Scripta Mater. Vol. 45 (2001), p.895.

[34] G.Q. Wu and Z. Huang: Mater. Sci. Eng. Vol. A345 (2003), p.286.

[35] J.G. Lin, G.S. Yu, G.Q. Wu and Z. Huang: J. Mater. Sci. Letters Vol. 20 (2001), p.1671.

[36] M. Holmquist, V. Recina and B. Pettersso: Acta Mater. Vol. 47 (1999), p.1791.

[37] P. He, J.C. Feng, B.G. Zhang and Y.Y. Qian: Mater. Character. Vol. 48 (2002), p.401.

[38] W. Han and J. Zhang: J. Mater. Sci. Technol. Vol. 17(1) (2001), p.191.

[39] P. He, J.C. Feng, B.G. Zhang and Y.Y. Qian: Mater. Character. Vol. 50 (2003), p.87.

[40] W. Wunderlich, T. Kremser and G. Frommeyer: Z. Metallk. Vol. 81 (1990), p.25.

[41] Y. Shida and H. Anada: Oxidation Met. Vol. 45(1/2) (1996), p.197.

[42] C. Coelho, A.S. Ramos, B. Trindade B, M.T. Vieira, J.V. Fernandes and M. Vieira: Surf. Coat. Technol. Vol. 120-121 (1999), p.297.

[43] M.T. Vieira, B. Trindade, A.S. Ramos, J.V. Fernandes and M.F. Vieira: Mater. Sci. Eng. Vol. A329-331 (2002), p.147.

[44] M.T. Vieira, B. Trindade, A.S. Ramos, J.V. Fernandes and M.F. Vieira: Thin Solid Films Vol. 343-344 (1999), p.43.

DOI: 10.1016/s0040-6090(99)00042-5

[45] A.S. Ramos and M.T. Vieira: Mater. Sci. Forum Vol. 426-432 (2003), p.1843.

[46] J. Wang et al.: J. Appl. Phys. Vol. 95 (2004), p.248.

[47] L.I. Duarte, M.F. Vieira, F. Viana, A.S. Ramos and M.T. Vieira. Accepted for publication in Materials Science Forum.

In order to see related information, you need to Login.