Effect of Aluminising on the Hot Corrosion Resistance of Nickel-Chromium Alloys


Article Preview

The effects of aluminising on the hot corrosion resistance of two nickel-chromium alloys containing 10 and 30 weight percent chromium, respectively, were examined. The Ni/Cr specimens were aluminised by pack cementation in Ar and underwent cyclic hot corrosion testing in Na2SO4- NaCl molten salt. XRD analysis indicated that a NiAl phase formed between the coating layer and substrate. Cyclic hot corrosion test results indicated that the effects of aluminising are more pronounced in the case of the 10 % Cr than in the case of 30 % Cr. The ductile NiAl phase suppressed the potential for crack initiation during thermal cycling of the 10 % Cr specimens, and reinforced the hot cyclic corrosion resistance in molten salt for the 30 % Cr specimens.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




C. A.C. Sequeira and F. D.S. Marquis, "Effect of Aluminising on the Hot Corrosion Resistance of Nickel-Chromium Alloys", Materials Science Forum, Vols. 514-516, pp. 505-509, 2006

Online since:

May 2006




[1] R. A. Rapp: Pure Appl. Chem. Vol. 62 (1990), p.113.

[2] M. Schütze: Protective Oxide Scales and their Breakdown (John Wiley & Sons, Chichester, 1997).

[3] R. L. Tapping, E. G. McVey and D.J. Disney: Corrosion of Metallic Materials in the CNRL Radwaste Incinerator, presented at Chemical Waste Incineration Conference, Manchester, U.K. (1990).

[4] R.C. Yin, A.A. Al-Refaie, B. Al-Yarni and A. K Bairamov: Eng. Failure Analysis Vol. 12 (2005), p.413.

[5] L.K. Kohler, L.F. Aprigliano and C.J. Madden: Spray formed Ni-Cr Alloys for Shipboard Waste Incinerators, NSWCCD-61-TR-1998/25 (1998).

[6] G.Y. Lai: High-Temperature Corrosion of Engineering Alloys, 3rd ed. (ASM International, Materials Park OH, USA 1997).

[7] F. Wu, H. Murakami and A. Suzuki: Surf. & Coatings Technol. Vol. 168 (2003), p.62.

[8] Coatings for High Temperature Structural Materials, NMAB report of the NRC, Washington, DC, USA (1996).

[9] T.S. Sidhu, R.D. Agrawal and S. Prakash: Surf. & Coatings Technol. Vol. 198 (2005), p.441.

[10] Ch. -Yuan Bai, Yi-J. Luo and Ch. -H. Koo: Surf. & Coatings Technol. Vol. 183 (2004), p.74.

[11] C. Houngninou, S. Chevalier and J. P Larpin: Appl. Surf. Sci. Vol. 236 (2004), p.256.

[12] X. Ren, F. Wang and X. Wang: Surf. & Coatings Technol. Vol. 198 (2005), p.425.

[13] Z.D. Xiang and P.K. Datta: Surf. & Coatings Technol. Vol. 179 (2004), p.95.

[14] Z.D. Xiang and P.K. Datta: Mat. Sci. & Eng. A Vol. 356 (2003), p.136.

[15] A. Suzuki, F. Wu, H. Murakami and H. Imai: Sci. & Technol. Advanced Mat. Vol. 5 (2004), p.555.

[16] Z.D. Xiang and P.K. Datta: Mat. Sci. & Eng. A Vol. 363 (2003), p.185.

[17] Ch. -H. Koo, Ch. -Y. Bai and Y. -J. Luo: Mat. Chem. & Phys. Vol. 86 (2004), p.258.

[18] R. Mevral, C. Duret and R. Pichoir: Mats. Sci Tech. Vol. 2 (1986), p.201.

[19] J.R. Nicholls and P. Hancock: Ind. Corr. Vol. 5 (1987). p.8.

[20] S.C. Singhal, ed: High-Temperature Protective Coatings (Metall. Soc. AIME, Warrendale, PA, USA, 1983).

[21] M. Nanko, Y. Kishi and T. Maruyama: Mater. Trans. JIM Vol. 39 (1998), p.1238.

[22] P. Y. Hou, M.J. McNallan, R. Oltra, E.J. Ojila and D.A. Shores, eds.: High Temperature Corrosion and Materials Chemistry, PV 98-9, p.500 (The Electrochemical Society, Pennington, NJ, USA, 1998).

Fetching data from Crossref.
This may take some time to load.