Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature

Abstract:

Article Preview

In this work, HfO2 was deposited by r.f. sputtering at room temperature and then annealed for different times at 200°C in a forming gas atmosphere. After annealing for 2 hours the HfO2 layers present a reduction on the flat band voltage of about 1 V, relatively to the as deposited film, decreasing from -2.23V down to -1.28 V. This means an improvement of the interface properties and a reduction on the oxide charge density from 1.33×1012 cm-2 to 7.62×1011 cm-2. The dielectric constant reaches a maximum of 18.3 after 5h annealing due to film’s densification. When annealing for longer times such as 10h a small degradation of the electrical properties is observed. After 10h annealing the dielectric constant, flat band voltage and fixed charge density are respectively, 14.9, -2.96 V and 1.64 ×1012 cm-2 and the leakage current also increases due to film’s crystallization.

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho

Pages:

58-62

DOI:

10.4028/www.scientific.net/MSF.514-516.58

Citation:

L. Pereira et al., "Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature ", Materials Science Forum, Vols. 514-516, pp. 58-62, 2006

Online since:

May 2006

Export:

Price:

$35.00

[1] S.A. Campbell, H.S. Kim, D.C. Gilmer, B. He, T. Ma, W.L. Gladfelter, IBM J. Res. Develop., 43 (1999) p.383.

[2] R. Degraeve, E. Cartier, T. Kauerauf, R. Carter, L. Pantisano, A. Kerber, G. Groeseneken, MRS bulletin, 27, 3 (2002) p.222.

DOI: 10.1557/mrs2002.75

[3] F. Lime, K. Oshima, M. Cassé, G. Ghibaudo, S. Cristoloveanu, B. Guillaumot, H. Iwai, SolidState Electron., 47 (2003) p.1617.

[4] Y.S. Lin, R. Puthenkovilakam, J.P. Chang, Appl. Phys. Lett., 81, 11 (2002) (2041).

[5] J. Robertson, J. Non-Cryst. Solids, 303 (2002) p.94.

[6] S. W. Nam, J. H. Yoo, S. Nam, H. J. Choi, D. Lee, D. H. Ko, J. H. Moon, J. H. Ku, S. Choi, J. Non-Cryst. Solids, 303 (2002) p . 139.

[7] H. Grüger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, T. Pechstein, Thin Solid Films, 447-448 (2004) p.509.

DOI: 10.1016/j.tsf.2003.07.013

[8] S. Lee, D. L. Kwong, Jpn. J. Appl. Phys, 42 (2003) p.7256.

[9] S. Nam, S. W. Nam, J. H. Yoo, D. H. Ko, Mater. Sci. Eng. B, 102 (2003) p.123.

[10] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato, R. Martins, Mater. Sci. Eng. B, 109 (2004) p.89.

[11] R.M. Wallace, G. Wilk, MRS bulletin, 27, 3 (2002) p.192.

[12] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

[13] H. Kim, P C. McIntyre, K. C. Saraswat, Appl. Phys. Lett., 82, 1 (2003) p.106.

[14] M. Houssa, V. V. Afanas'ev, A Stesmans, M. M. Heyns, Appl. Phys. Lett., 77, 12 (2000) p.1885.

[15] K. Choi, H. Temkin, H. Harris, S. Gangopadhyay, L. Xie, M. White, Appl. Phys. Lett., 85, 2 (2004) p.215.

[16] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Mat. Science and Eng. B (2005), in press.

In order to see related information, you need to Login.