Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature


Article Preview

In this work, HfO2 was deposited by r.f. sputtering at room temperature and then annealed for different times at 200°C in a forming gas atmosphere. After annealing for 2 hours the HfO2 layers present a reduction on the flat band voltage of about 1 V, relatively to the as deposited film, decreasing from -2.23V down to -1.28 V. This means an improvement of the interface properties and a reduction on the oxide charge density from 1.33×1012 cm-2 to 7.62×1011 cm-2. The dielectric constant reaches a maximum of 18.3 after 5h annealing due to film’s densification. When annealing for longer times such as 10h a small degradation of the electrical properties is observed. After 10h annealing the dielectric constant, flat band voltage and fixed charge density are respectively, 14.9, -2.96 V and 1.64 ×1012 cm-2 and the leakage current also increases due to film’s crystallization.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho






L. Pereira et al., "Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature ", Materials Science Forum, Vols. 514-516, pp. 58-62, 2006

Online since:

May 2006




[1] S.A. Campbell, H.S. Kim, D.C. Gilmer, B. He, T. Ma, W.L. Gladfelter, IBM J. Res. Develop., 43 (1999) p.383.

[2] R. Degraeve, E. Cartier, T. Kauerauf, R. Carter, L. Pantisano, A. Kerber, G. Groeseneken, MRS bulletin, 27, 3 (2002) p.222.

DOI: 10.1557/mrs2002.75

[3] F. Lime, K. Oshima, M. Cassé, G. Ghibaudo, S. Cristoloveanu, B. Guillaumot, H. Iwai, SolidState Electron., 47 (2003) p.1617.

[4] Y.S. Lin, R. Puthenkovilakam, J.P. Chang, Appl. Phys. Lett., 81, 11 (2002) (2041).

[5] J. Robertson, J. Non-Cryst. Solids, 303 (2002) p.94.

[6] S. W. Nam, J. H. Yoo, S. Nam, H. J. Choi, D. Lee, D. H. Ko, J. H. Moon, J. H. Ku, S. Choi, J. Non-Cryst. Solids, 303 (2002) p . 139.

[7] H. Grüger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, T. Pechstein, Thin Solid Films, 447-448 (2004) p.509.

DOI: 10.1016/j.tsf.2003.07.013

[8] S. Lee, D. L. Kwong, Jpn. J. Appl. Phys, 42 (2003) p.7256.

[9] S. Nam, S. W. Nam, J. H. Yoo, D. H. Ko, Mater. Sci. Eng. B, 102 (2003) p.123.

[10] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato, R. Martins, Mater. Sci. Eng. B, 109 (2004) p.89.

[11] R.M. Wallace, G. Wilk, MRS bulletin, 27, 3 (2002) p.192.

[12] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

[13] H. Kim, P C. McIntyre, K. C. Saraswat, Appl. Phys. Lett., 82, 1 (2003) p.106.

[14] M. Houssa, V. V. Afanas'ev, A Stesmans, M. M. Heyns, Appl. Phys. Lett., 77, 12 (2000) p.1885.

[15] K. Choi, H. Temkin, H. Harris, S. Gangopadhyay, L. Xie, M. White, Appl. Phys. Lett., 85, 2 (2004) p.215.

[16] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Mat. Science and Eng. B (2005), in press.

In order to see related information, you need to Login.