Effect of the Ni Chemical Distribution on the Reactivity and Densification of WC-(Fe/Ni/Cr) Composite Powders


Article Preview

The objective of this work was to study the effect of the Ni distribution on the reactivity and densification of WC-(Fe/Ni/Cr) composite powders. For such, stainless steel AISI 304, was used as a binder base composition which was enriched with Ni by three different processing methods: WC sputter deposition using a target of stainless steel with Ni discs, conventional wet milling of commercial powders (WC, stainless steel and Ni powders) and a previous coating of the WC particles with Ni, followed by the conventional mixing of this coated powder with stainless steel powder. The reactive sintering of these composite powders with identical compositions was investigated. The powder compacts were characterized by scanning electron microscopy and X-ray diffraction with Rietveld analysis to quantify de crystalline phases present.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




C. M. Fernandes et al., "Effect of the Ni Chemical Distribution on the Reactivity and Densification of WC-(Fe/Ni/Cr) Composite Powders", Materials Science Forum, Vols. 514-516, pp. 633-637, 2006

Online since:

May 2006




[1] C. Hanyaloglu, B. Aksakal and J.D. Bolton: Mater. Charact. 47 (2001), p.315.

[2] T. Kakeshita and C.M. Wayman: Mater. Sci. and Eng. A141 (1991), p.209.

[3] T. Farroq and T.J. Davies: Int. J. Powder Metall. 27 (4) (1991) p.347.

[4] B. Uhrenius: Powder Metall. 35 (3) (1992), p.203.

[5] R. González, J. Echeberría, J.M. Sánchez and F. Castro: J. Mater. Sci. 30 (1995), p.3435.

[6] B. Uhrenius, H. Pastor and E. Pauty: Int. J. Refr. Metals & Hard Mater. 15 (1997), p.139.

[7] R. K Viswanadham and P.G. Lindquist: Metall. Trans. A 18A (1987), p.2163.

[8] D. Moskowitz: Mod. Dev. Powder Metall. 10 (1977), p.543.

[9] H. Suzuki, T. Yamamoo and I. Kawakatsu: Powder Metall. J. 14 (1967), p.26.

[10] C.M. Fernandes, V.M. Ferreira, A.M.R. Senos and M.T. Vieira: Surf. Coat. Technol. 176 (1) (2003), p.103.

[11] C.M. Fernandes, A.M.R. Senos and M.T. Vieira: Int. J. Refr. Metals & Hard Mater. 21 (2003), p.147.

[12] C.M. Fernandes, A.M.R. Senos and M.T. Vieira: Mater. Sci. Forum 455-456 (2004), p.295.

[13] L. Prakash, H. Holleck, F. Thummler and P. Walter: Modern Developments in Powder Metallurgy 14, MPIF (ed. H. Hausner, H. W. Antes & G.D. Smith, 1981) p.255.

[14] V.A. Tracey: Refr. Metals & Hard Mater. 11 (1992) p.137.

[15] A.C. Larson and R.B. von Dreele: LAUR 86-748 Report, General Structure Analysis System, Los Alamos National Laboratory (1990).

[16] J. Lu, L. Gao, J. Guo and K. Niihara: Mater. Res. Bull. 35 (2000), p.2387.

[17] T. D. Mitchell Jr. and L.C. De Jonghe: J. Am. Ceram. Soc. 78 (1995), p.199.

[18] A.F. Guillermet: Int. J. Refr. & Hard Metals 6 (1) (1987), p.24.

[19] B. Uhrenius: Scand. J. Metallurgy 20 (1991), p.93.

[20] S. Raghunahan, R. Caron and P. Sandell: Adv. Mater. Process. 4 (1996), p.21.

Fetching data from Crossref.
This may take some time to load.