A Study on the Electrical Properties of ZnO Based Transparent TFTs


Article Preview

The purpose of this work is to present in-depth electrical characterization on transparent TFTs, using zinc oxide produced at room temperature as the semiconductor material. Some of the studied aspects were the relation between the output conductance in the post-pinch-off regime and width-to-length ratios, the gate leakage current, the semiconductor/insulator interface traps density and its relation with threshold voltage. The main point of the analysis was focused on channel mobility. Values extracted using different methodologies, like effective, saturation and average mobility, are presented and discussed regarding their significance and validity. The evolution of the different types of mobility with the applied gate voltage was investigated and the obtained results are somehow in disagreement with the typical behavior found on classical silicon based MOSFETs, which is mainly attributed to the completely different structures of the semiconductor materials used in the two situations: while in MOSFETS we have monocrystalline silicon, our transparent TFTs use poly/nanocrystalline zinc oxide with grain sizes of about 10 nm.



Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho




P. Barquinha et al., "A Study on the Electrical Properties of ZnO Based Transparent TFTs", Materials Science Forum, Vols. 514-516, pp. 68-72, 2006

Online since:

May 2006




[1] J. F. Wager, Science 300, 1245 (2003).

[2] R. L. Hoffman, J. Appl. Phys. 95, 5813 (2004).

[3] H.S. Bae, M.H. Yoon, J.H. Kim, S. Im, Appl. Phys. Lett. 83, 5313 (2003).

[4] P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).

[5] J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, M. Kawasaki, Jpn. J. Appl. Phys. 42, L347 (2003).

DOI: https://doi.org/10.1143/jjap.42.l347

[6] R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).

[7] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 93, 1624 (2003).

[8] E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, R. Martins, Adv. Mater. 17, 590 (2005).

[9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003).

[10] B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys. D: Appl. Phys. 36, L105 (2003).

[11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano,H. Hosono, Nature 432, 488 (2004).

[12] E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, R. Martins, L. Pereira, Appl. Phys. Lett. 85, 2541 (2004).

[13] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).

[14] S. Martin, C. -S. Chiang, J. -Y. Nahm, T. Li, J. Kanicki, Y. Ugai, Jpn. J. Appl. Phys. 40, 530 (2001).

[15] R.L. Hoffman, Development, Fabrication, and Characterization of Transparent Electronic Devices, Master thesis submitted to Oregon State University (2002).

[16] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York, (1998).