Pinning Fermi Level of p-GaN due to Three Different (Zr, Ti, and Cr) Metal Contact

Abstract:

Article Preview

The Current-Voltage-Temperature (I-V-T) characteristics of single layer deposition, consisting of Zr, Ti, or Cr/p-GaN Schottky diodes were determined in the temperature range 27- 100oC. Sputtering method was used for deposition of these metals on p-GaN. Analysis of the measured characteristics at room temperature allows the determination of the electrical parameters, the saturation current Io and the ideality factorη. The barrier heights and effective Richardson coefficients were determined through activation energy plot. It was found that pinning of Fermi level occurred for these metal contacts on p-GaN with the carrier concentration of 5.6x 1017 cm-3, where the Schottky barrier heights of Zr, Ti, or Cr/p-GaN are determined to be in the same range (~0.87eV).

Info:

Periodical:

Edited by:

A.K. Arof and S.A. Hashim Ali

Pages:

262-266

DOI:

10.4028/www.scientific.net/MSF.517.262

Citation:

C.K. Tan et al., "Pinning Fermi Level of p-GaN due to Three Different (Zr, Ti, and Cr) Metal Contact", Materials Science Forum, Vol. 517, pp. 262-266, 2006

Online since:

June 2006

Export:

Price:

$35.00

[1] S. Nakamura, MRS Bull. 22, (1997), p.29.

[2] S. Nakamura, The Blue Laser Diode: The Complete Story (Springer, Berlin, 2000).

[3] Pal S, Sugino T. Appl Surf Sci., Vol. 161 (2000), p.263.

[4] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, J. Appl. Phys., Vol. 81 (1997), p.1315.

[5] L. S. Yu, D. Qiao, L. Jia, S.S. Lau, Y. Qi, and K. M. Lau, Appl. Phys. Lett., Vol. 79 (2001), p.4536.

[6] K. Shiojima, T. Sugahara, and S. Sakai, Appl. Phys. Lett., Vol. 74 (1999), p. (1936).

[7] S. J. Pearton, F. Ren, B. P. Gilla and C. R. Abernathy: Advanced processing of Group IIINitrides, (2004).

[8] A. Weimar, A. Lell, G. Bruderl, S. Bader, and V. Harle, Phys. Stat. Sol. (a), Vol. 183 (2001), p.169.

[9] S. M. Sze: Physics of Semiconductor Devices, 2nd edition, (John Wiley & Sons, New York, 1989).

[10] D. Donoval, V. Kulikov, P. Beňo, J. Racko, ASDAM (2002).

[11] J. I. Pankove, S. Bloom, and G. Harbeke, RCA Rev. Vol. 6 (1975), p.163.

[12] P. Hacke, T. Detchprohm, K. Hiramatsu and N. Sawaki, Appl. Phys. Lett., Vol. 63 (1993), p.2676.

[13] A. T. Ping, A.C. Schmitz, M. A. Khan and I. Adesida, Electron. Lett., Vol. 32 (1996), p.68.

[14] J. D. Guo, M. S. Feng, R. J. Guo, F. M. Pan and C. Y. Chang, Appl. Phys. Lett., Vol. 67 (1995), p.2657.

[15] A. C. Schmitz, A.T. Ping, M. Asif Khan, Q. Chen, J. W. Yang. And I. Adesida, Journal of Electronic Materials, Vol. 27 (1998), p.4.

[16] S. M. Sze: Physics of semiconductor Devices, 2 nd ed. (Wiley, New York, 1981), chapter 5.

[17] T. Sawada, Y. Izumi, N. Kimura, K. Suzuki, K. Imai, S. -W. Kim, T. Suzuki, Appl. Surface Science, Vol. 216 (2003), p.192.

[18] W. E. Spicer, P. W. Chye, C. M. Garner, I. Lindau, and P. Pianetta, Surface Sci., Vol. 86 (1979), p.763.

[19] S. D. Lester, F. A. Ponce, M. G. Craford and D. A. Streigerwaid, Appl. Phys. Lett., Vol. 66 (1995), p.1249.

[20] F. A. Ponce, GaN and Related material, (Gordon and Breach Science publisher, Neterland) ch. 5, p.145, (1997).

[21] W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, Phys. Rev. Lett., Vol. 44 (1980), 420.

[22] J. H. Werner, A. F. J. Levi, R. T. Tung, M. Anzlower and M. Pinto, Phys. Rev. Lett., Vol. 60 (1988), p.53.

[23] E. H. Rhoderick and R. H. Williams: Metal-Semiconductor Contacts, 2nd edition, (Clarendon Press, Oxford, 1988) ch. 3, p.118.

[24] L. S. Yu, Q. Z. Liu, D. J. Qiao, S. S. Lau, and J. M. Redwing, J. Appl. Phys., Vol. 84 (1998), p. (2099).

[25] L. S. Yu, L. Jia, D. Qiao, S. S. Lau, J. Li, J. Y. Lin, and H. X. Jiang, IEEE transactions on electron devices, Vol. 50 (2003), p.292.

[26] H. Morkoc: Nitride Semiconductors and Devices (Berlin: Springer, 1999), p.203.

In order to see related information, you need to Login.