Effects of Ag Addition on Superconductivity and Microstructure of DyBa2Cu3O7-δ-Ag Composite


Article Preview

This paper reports on the effects of Ag addition on physical properties of high temperature superconductors DyBa2Cu3O7-δ (Dy123). A series of the Dy123 - Agx composite was prepared by solid state reaction method with varying amount of metallic silver (x = 0 – 0.3). Resistance versus temperature measurement was done using the four-point-probe method in the temperature range of 79 K to 300 K. Pure DyBa2Cu3O7-δ was found to superconduct with Tc onset of 91 K and Tc zero of 78 K. Addition of Ag at x = 0.05 caused both Tc onset and Tc zero to increase to 93 K and 84 K, respectively. However, Tc onset and Tc zero dropped for higher silver contents. We found that the optimum silver content in DyBa2Cu3O7-δ for best superconducting behavior and hardness is between x = 0.05 and 0.10. Microstructure analysis using SEM and EDAX showed that most of the silver is uniformly distributed along the grain boundaries filling the pores and hence increasing the hardness of the samples.



Edited by:

A.K. Arof and S.A. Hashim Ali






B. Musa et al., "Effects of Ag Addition on Superconductivity and Microstructure of DyBa2Cu3O7-δ-Ag Composite ", Materials Science Forum, Vol. 517, pp. 41-44, 2006

Online since:

June 2006




[1] L. Gervin, P. Campbell, Nature 330(1987), p.611.

[2] M. Cankurtaran and G.A. Saunders, Supercond Sci. Technol. 9 (1992), p.210.

[3] T Nishio, Y. Itoh, F. Ogasawasa, M. Suganum, Y. Yamada and O. Mizutani, J. Mater. Sci. 24: (1989), p.3228.

[4] F. Deslandses, B. Raveau, P. Dubots and D. Legat, Solid State Commun. 71 (1989), p.407.

[5] Singh J.P., Leu H. J., Poeppel R. B., Van Voorhees E, Goudey G.T., Winsley K. and Shi D., J. Appl. Phys. 66 (1989), p.3154.

[6] J. S. Moya and E. Saiz, Solid State Commun. 74 (1990), p.1291.

[7] O. Wills, Z. Fisk, J.D. Thompson, S.W. Cheong, R.M. Aikin, J.L. Smith and E. Zirngiebl, J. Magn. Mater. 67 (1987) L139.

[8] P.H. Hor, R.L. Meng, Y.Q. Wang,L. Guo Z.J. Huang,J. Bechtold, K. Forster and C.W. Chu, Phys. Rev. Lett. 58 (1987) , p.1891.

[9] Zhang Qi-rui, Qian Yi-tai, Chen Zu-yao, Guan Wei-yan, Zhao Yong, Zhang Han, Cao Lie-zhao, Xia Jian-sheng, Pang Guo-qang, Zhang Ming-jian, He Zheng-hui, Yu Dao-qi, Sun Shi-fang, Zhang Tao, Fang Ming-hu, Yang Zhi-ping, Solid State Commun. 63 (1987).

DOI: 10.1016/0038-1098(87)90286-9

[10] K.N. Yang, Y. Dalichaouch, J.M. Ferreira, B.W. Lee, J.J. Neumeier, M.S. Torikachvili, H. Zhou and M. B. Maple, Solid State Commun. 63 (1987), p.515.

[11] Cao Ning, Duan Zhanguo, Shao Xiuyu, Zheng Jiaqi, Ran Qize, Liu Jinxiang, Chang Yinchuan, Hou Desen, Fan Hui, Chen Xichen, Guan Weiyan, Solid State Commun. 63 (1987), p.965.

DOI: 10.1016/0038-1098(87)90640-5

[12] Takamichi Inaba, Yoshiki Takano and Kazuko Sekizawa, Solid State Commun. 70 (1989), p.725.

DOI: 10.1016/0038-1098(89)90989-7

[13] A.P. Li, Q.H. Ni and Q.P. Kong, Phys. Stat. Sol. (a) 127 (1991), p.187.

[14] P. Majewski, A. Sotelo, H. Szillat, S. Kaesche and F. Aldinger, Physica C 275 (1997), p.47.

[15] T. Matsushita, A. Suzuki, T. Kishida, M. Okuda and H. Naito, Supercond. Sci. Technol. 7 (1994), p.222. x = 0 x = 0. 05 x = 0. 10.

In order to see related information, you need to Login.