Effect of Ethylene Sulphite on the Conductivity and Morphology of PEO-KOH Films

Abstract:

Article Preview

The plasticized PEO-KOH films have been investigated using the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The conductivity of films increased by about 2 orders of magnitude from 10-5 to 10-3 S cm-1 at r.t. on addition of 0.5 wt.% of ethylene sulphite (ES). The degree of crystallinity was calculated from the XRD patterns. SEM micrographs show that the plasticized films were porous. The highest conductivity of plasticized films at r.t. was (1.3 ± 0.2) x 10-3 S cm-1 for the film with 0.5 wt.% of ES content. The number density of mobile ions was shown to increase indicating that ES has dissociated more salts into ions and thereby increasing the conductivity.

Info:

Periodical:

Edited by:

A.K. Arof and S.A. Hashim Ali

Pages:

89-92

DOI:

10.4028/www.scientific.net/MSF.517.89

Citation:

M.F. Hassan et al., "Effect of Ethylene Sulphite on the Conductivity and Morphology of PEO-KOH Films ", Materials Science Forum, Vol. 517, pp. 89-92, 2006

Online since:

June 2006

Export:

Price:

$35.00

[1] M.B. Armand, Ann. Rev. Mater. Sci. 16 (1986), p.245.

[2] J.R. Mac Callum, C.A. Vincent (Eds. ), Polymer Elecrolyte Reviews, Elservier, Amsterdam, (1987).

[3] M.A. Ratner, D.F. Shriver, Chem. Rev. 88 (1988), p.109.

[4] J.R. Owen, in: A.L. Lasker, S. Chandra (Eds. ), Superionic Solids and Solid Electrolytes-Recent Trends (Academic Press, New York, 1989), p.111.

[5] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Electochim. Acta 46 (2001), p.2777.

[6] D.E. Fenton D.E. Parker, P.V. Wright, Polymer 14 (1973), p.589.

[7] M.B. Armand, J.M. Chabagno, M.J. Duclot, in: P. Vashista, J.N. Mundy, G.K. Shenoy (Eds. ), Fast Ion Transport in Solids (Elservier, North Holland, New York, 1979).

[8] E.A. Retman, M.L. Kaplan, R.J. Cava, Solid State Ionics 17, (1985), p.67.

[9] S.R. Starkey and R. Frech, Electrochim. Acta 42 (1997), p.471.

[10] C.J. Leo, G.V. Subba Rao and B.V.R. Chowdri, J. Power Sources 148 (2002), p.157.

[11] S. Ramesh and A.K. Arof, Mat. Sci. Eng. B85 (2001), p.11.

[12] S.S. Sekhon, K.V. Pradeep and S.A. Agnihorty, Solid State Ionics, 217 (1998).

[13] S. Guinot, E. Salmon, J.F. Penneau, J.F. Fauvarque, Electrochim. Acta 43 (1998), p.1163.

[14] N. Vassal, E. Salmon, J.F. Fauvarque, J. Electrochem. Soc. 146 (1999), p.20.

[15] A. Lewandowski, K. Skorupska, J. Malinska, Solid State Ionics 133 (2000), p.265.

[16] N. Vassal, E. Salmon, J.F. Fauvarque, Electrochim. Acta 45 (2000), p.1527.

[17] A.A. Mohamad, N.S. Mohamed, Y. Alias, A.K. Arof, J. Alloy. Comp. 337 (2002), p.208.

[18] C.C. Yang, S.J. Lin, Mater. Lett. 57 (2002), p.873.

[19] A.A. Mohamad, N.S. Mohamed, M.Z.A. Yahya, R. Othman, S. Ramesh, Y. Alias, A.K. Arof, Solid State Ionics 156 (2003), p.171.

[20] C. Yang, S.J. Lin, S.T. Hsu, J. Power Sources 122 (2003), p.210.

[21] C.C. Yang, Mater. Lett. 58 (2003), p.33.

[22] C. Berthier, W. Gorecki, M. Minier, Solid State Ionics 11 (1983), p.91.

In order to see related information, you need to Login.