Mechanochemical Synthesis of Bi4Ti3O12


Article Preview

Our efforts were directed to the preparation of bismuth titanate – Bi4Ti3O12 (BIT) by mechanically assisted synthesis. The mechanical activation was applied to prepare bismuth titanate, Bi4Ti3O12, from bismuth oxide, Bi2O3, and titanium oxide, TiO2 (in an anatase crystal form). Mechanochemical synthesis was performed in a planetary ball mill in air atmosphere. Bismuth titanate ceramics was obtained by sintering at 1000 oC. The formation of Bi4Ti3O12 in the sintered samples was confirmed by X-ray diffraction analysis. Scanning electron microscopy, SEM, was used to study the particle size and powder morphology. The obtained results indicate that Bi4Ti3O12 from the powder synthesized by high-energy ball milling exhibits good sinterability, showing advantage of the mechanochemical process over conventional solid-state reaction.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




Z.Ž. Lazarević et al., "Mechanochemical Synthesis of Bi4Ti3O12", Materials Science Forum, Vol. 518, pp. 125-130, 2006

Online since:

July 2006




[1] B. Aurivillius: Arkivkemi Vol. 1 (1949), p.463.

[2] B. Aurivillius: Arkivkemi Vol. 1 (1949), p.499.

[3] E.C. Subbarao: J. Phys. Chem. Solids Vol. 23 (1962), p.665.

[4] A.D. Rae, J.G. Thompson, R.L. Withers and A.C. Wills: Acta Cryst. Vol. 46 (1990), p.474.

[5] J.P. Mercurio: Bol. Soc. Esp. Ceram. Vid. Vol. 37 [2-3] (1998), p.136.

[6] Z.Y. Xu and X.M. Chen: Mat. Lett. Vol. 39 (1999), p.18.

[7] S.E. Cummings and L.E. Cross: J. Appl. Phys. Vol. 39.

[5] (1968), p.2268.

[8] S. Kojima, A. Hushur, F. Jiang, S. Hamazaki, T. Takashige, M.S. Jang and S. Shimada: J. NonCryst. Solidas Vol. 293-295 (2001 ), p.250.


[9] M. Villegas, A.C. Caballero, C. Moure, P. Duran and J.F. Fernandez: J. Am. Ceram. Soc. Vol. 82.

[9] (1999), p.2411.

[10] A.V.P. Rao, A.I. Robin and S. Kommarneni: J. Cryst. Growth Vol. 237-239 (2002), p.469.

[11] S.H. Ng, J. Xue and J. Wang: J. Am. Ceram. Soc. Vol. 85.

[11] (2002), p.2660.

[12] Y. Osamu, M. Noboru and H. Ken: Br. Ceram. Trans. J. Vol. 90 (1991), p.111.

[13] H. Xu, K.J. Bowman and E.B. Slamovich: J. Am. Ceram. Soc. Vol. 86.

[10] (2003), p.1815.

[14] S. Goplan, K. Mehta and V. Virkar: J. Mater. Res. Vol. 11.

[8] (1996), p.1863.

[15] L.B. Kong, J. Ma, W. Zhu and O.K. Tan: Mater. Lett. Vol. 51 (2001), p.108.

[16] B.D. Stojanovic, C.O. Paiva-Santos, C. Jovalekic, F.M. Filho Simoes, Z. Lazarevic and J.A. Varela: Materials Chemistry and Physics (2005) (article in press).

[17] J.S. Benjamin: Sci. Am. Vol. 234 (1976), p.40.

[18] P.S. Gilman and J.S. Benjamin: Mechanical Alloying. Annu. Rev. Mater. Sci. Vol. 13 (1983), p.279.

[19] J. Wang, J.M. Xue, D.M. Wan and B.K. Gan: J. Sol. State Chem. Vol. 154 (2000), p.321.

[20] J.G. Lisoni, P. Millán, E. Vila, J.L. Martín de Vidales, Th. Hoffman and A. Castro: Chem. Mater. Vol. 13 (2001), p. (2084).

Fetching data from Crossref.
This may take some time to load.