Improved Materials for Environmental Application: Surfactant-Modified Zeolites


Article Preview

The surface properties of zeolites A, X, Y and natural zeolite clinoptilolite (CLI) functionalized by cationic surfactants were investigated. The quaternary ammonium type surfactants, such as hexadecyltrimethylammonium (HDTMA) chloride, stearildimethylbenzylammonium (SDMBA) chloride and distearildimethylammonium (DSDMA) chloride, replaced inorganic cations like Na+ and Ca2+ on the external surface of zeolites. The adsorption capacities of all organic cations followed the order of CLI>CaY>CaX>CaA>NaY>NaX>NaA and increased with the increase of Si/Al molar ratio in zeolite structure. This modification resulted in an alteration in the surface property of zeolites - it changed from hydrophilic to hydrophobic. The adsorption of selected pesticides with different hydrophobicity on surfactant-modified zeolites was studied. It is shown that surfactant-modified zeolites can be used for removal of pesticides from the environment. The increase in hydrophobicity of pesticides resulted in an increase in pesticide adsorption on SDMBA and DSDMA modified zeolites.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




V. Jovanović et al., "Improved Materials for Environmental Application: Surfactant-Modified Zeolites", Materials Science Forum, Vol. 518, pp. 223-228, 2006

Online since:

July 2006




[1] H. Karapanagioti, D. Sabatini and R. Bowman: Water Res. Vol. 30 (2005), p.699.

[2] A. Daković, M. Tomašević-Čanović, G. Rottinghaus, V. Dondur and Z. Mašić: Colloids Surf. B: Biointerfaces Vol. 30 (2003), p.157.


[3] W. Song, G. Li, V.H. Grassien and S.C. Larsen: Environ. Sci. Technol. Vol. 39 (2005), p.1214.

[4] B.S. Krishna, D.S.R. Murty and B.S. Jai Prakash: Appl. Clay Sci. Vol. 20 (2001), p.65.

[5] S.Y. Lee and S.J. Kim: Appl. Clay Sci. Vol. 22 (2002), p.55.

[6] C.R. Usher, A.E. Michel, D. Stec and V.H. Grassian: Atmos. Environ. Vol. 37 (2003), p.5337.

[7] A. Stein, B.J. Melde and R.C. Schroden: Adv. Mater. Vol. 12 (2000), p.1403.

[8] M. Ghiaci, A. Abbaspur, R. Kiaa and F. Seyedeyn-Azad: Separation and Purification Technology Vol. 40 (2004), p.217.

[9] K. Hayakawa, T. Morita, M. Ariyoshi, T. Maeda and I. Satake: J. Colloid Interface Sci. Vol. 177 (1996), p.621.

[10] R. Singh and P.K. Dutta: Micropor. Mesopor. Mater. Vol. 32 (1999), p.29.

[11] S. Pawsey, K. Yach and L. Reven: Langmuir Vol. 18 (2002), p.5205.

[12] G. Guerrero, P.H. Mutin and A. Vioux: Chem. Mater. Vol. 13 (2001), p.4367.

[13] P. Huttenloch, K. Roehl and K. Czurda: Environ. Sci. Technol. 35 (2001), p.4260.

[14] W. Ding, G.D. Meitzner and E. Iglesia: J. Catal. Vol. 206 (2002), p.14.

[15] M. Smaihi, E. Gavilan, J.O. Durand and V.P. Valtchev: J. Mater. Chem. Vol. 14 (2004), p.1347.

[16] R.S. Bowman: Micropor. Mesopor. Mater. Vol. 61 (2003), p.43.

[17] Y. Fushiwaki and K. Urano: J. Health Sci. Vol. 7 (2001), p.429.

[18] J.H. Montgomery: Agrochemical desk reference: Enviromental Data, Ann Arbor, MI, USA: Lewis Publishers (1993), p.625.

[19] J.V. Bottero, K. Khathib, F. Thomas, K. Jucker, J.L. Berssillon and J. Mallevialle: Water Res. Vol. 28 (1994), p.483.

[20] W.M. Meier and D.H. Olson: Zeolites-Special Issue: Atlas of Zeolite Structure Types Vol. 12 (1992), p.449.

[21] G. Kahr and F.T. Madsen: Appl. Clay Sci. Vol. 9 (1995), p.327.

[22] ASTM, D2081-92, Standard Test Method for pH of Fatty Quternary Ammonium Chlorides, Book of Standards, 06. 03 (1998).

[23] M.J. Frisch et al.: Gaussian 03, Revision B. 02; Gaussian Inc., Pittsburgh PA, (2003).

[24] G.M. Haggerty and R.S. Bowman: Environ. Sci. Technol. Vol. 28 (1994), p.452.

[25] A. Topalov, D. Molnár-Gábor, B. Abramović, S. Korom and D. Peričin: J. Photochem. Photobiol. A: Chem. Vol. 160 (2003), p.195.

[26] J. -M. Herrmann: Topics in Catal. Vol. 34 (2005), p.49.