Structural and Dielectric Properties of BaTi1-xSnxO3 Ceramics

Abstract:

Article Preview

BaTi1-xSnxO3 (BTS) powders, with x ranging from 0 to 1, were synthesized by solid-state reaction technique. The powders were pressed into pellets and sintered at 1370 and 1420 oC. The structural characterization of sintered BTS samples was made at room temperature using X-ray diffraction and Raman spectroscopy measurements. The BTS samples were found to be singlephase solid solutions. Dielectric properties of sintered BTS samples were studied as a function of sintering temperatures and tin contents, too. For samples with x ranging from 0 up to 0.15, it has been found that the Curie temperature decreases while the maximum of the dielectric constant increases with increasing tin content. These samples have relatively high dielectric constants, contrary to x > 0.2 samples with very low dielectric constants. It is noticed that BTS ceramics sintered at 1420 oC exhibit better dielectric properties than those sintered at 1370 oC.

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic

Pages:

241-246

DOI:

10.4028/www.scientific.net/MSF.518.241

Citation:

S. Marković et al., "Structural and Dielectric Properties of BaTi1-xSnxO3 Ceramics", Materials Science Forum, Vol. 518, pp. 241-246, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] J. -H. Jeon: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1045.

[2] J. -H. Jeon, Y. -D. Hahn and H. -D. Kim: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1653.

[3] W. -K. Chang, S. -F. Hsien, Y. -H. Lee, K. -N. Chen, N. -C. Wu and A.A. Wang: J. Mat. Sci. Vol. 33 (1998), p.1765.

[4] N. Yasuda, H. Ohwa and S. Asano: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5099.

[5] R. Farhi, M. El Marssi and A. Simon: J. Ravez, Eur. Phys. J. B Vol. 9 (1999), p.599.

[6] N. Yasuda, H. Ohwa and K. Arai: J. Mat. Sci. Letters Vol. 16 (1997), p.1315.

[7] F.D. Morrison, D.C. Sinclair and A.R. West: J. Appl. Phys. Vol. 86 (1999), p.6355.

[8] N.S. Novosiltsev and A.L. Khodakov: Zh. Tekh. Fiz. Vol. 22 (1956), p.310.

[9] G.A. Smolenskii, V.A. Bokov, N.N. Isupov, V.A. Krainik, R.E. Pasynkov and М.S. Shur: Ferroelectrics and anti-ferroelectrics (Izd. Nauka, Leningradskii Otdeleniye, Leningrad 1971), pp.355-369 (in Russian).

[10] V. Muller, H. Beige, H. -P. Abicht and C. Eisenschmidt: J. Mater. Res. Vol. 19 (2004), p.2834.

[11] R. Steinhausen, A. Kouvatov, H. Beige, H.T. Langhammer and H. -P. Abicht: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1677.

[12] U. Straube, H.T. Langhammer, et al.: J. Eur. Ceram. Soc. Vol. 19 (1999), p.1171.

[13] V. Mueller, L. Jager, H. Beige, et al.: Solid State Comm. Vol. 129 (2004), p.757.

[14] R.D. Shannon and C.T. Prewitt: Acta Cryst. B Vol. 25.

[5] (1969), p.925.

[15] D.E. Rase and R. Roy: J. Am. Ceram. Soc. Vol. 38 (1955), p.102.

[16] T.J. Parker and C.J. Burfoot: Brit. J. Appl. Phys Vol. 17 (1966), p.207.

[17] Y. -I. Kim, J.K. Jung and K. -S. Ryu: Mat. Res. Bull. Vol. 39 (2004), p.1045.

[18] M. DiDomenico, S.H. Wemple, S.P.S. Porto and R.P. Bauman: Phys. Rev. Vol. 174 (1968), p.522.

[19] S.W. Lu, B.I. Lee, Z.L. Wang and W.D. Samuels: J. Cryst. Growth Vol. 219 (2000), p.269.

In order to see related information, you need to Login.