Structural Effects in Electrocatalysis: Formic Acid Oxidation at Model and Real Pt Catalysts

Abstract:

Article Preview

Formic acid oxidation was studied at low-index Pt single crystals (model systems) as well as at the platinum catalyst supported on high area carbon (real catalyst) in HClO4. The Pt single crystals were characterized by LEED. The LEED patterns obtained after a mild heating of flame-annealed crystals have shown clean, well ordered unreconstructured surfaces. Pt-C supported catalyst was analyzed by AFM and STM in air and by XRD. AFM and STM images revealed the presence of Pt-C agglomerates of several tenth of nm consisting of Pt particles ranged from 2 nm to 6 nm. The electrocatalytic activity of these catalysts in formic acid oxidation increased in a sequence: Pt(100) < Pt(110) < Pt-C/GC < Pt(111).

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic

Pages:

259-264

DOI:

10.4028/www.scientific.net/MSF.518.259

Citation:

J.D. Lović et al., "Structural Effects in Electrocatalysis: Formic Acid Oxidation at Model and Real Pt Catalysts", Materials Science Forum, Vol. 518, pp. 259-264, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] A. Capon and R. Parsons: J. Electroanal. Chem. Interfacial Electrochem. Vol. 44 (1973), p.1.

[2] R.R. Adžić, A.V. Tripković and W. O'Grady: Nature Vol. 296 (1982), p.137.

[3] A. Tripković, K. Popović and R.R. Adžić: J. Chim. Phys. Vol. 88 (1991), p.1635.

[4] J. Clavilier, R. Parsons, R. Durand, C. Lamy and J.M. Leger: J. Electroanal. Chem. Interfacial Electrochem. Vol. 124 (1981), p.321.

[5] C. Lamy and J.M. Leger: J . Chim. Phys. - Chim. Biol. Vol. 88 (1991), p.1649.

[6] T. Iwasita, X.H. Xia, E. Herrero and H.D. Liess: Langmuir Vol. 12 (1996), p.4260.

[7] A. Bewick, K. Kunimatsu and B.S. Pons: J. Electroanal. Chem. Vol. 160 (1984), p.147.

[8] B. Beden, F. Hahn, S. Juanto, C. Lamy and J.M. Leger: J. Electroanal. Chem. Vol. 225 (1987), p.215.

[9] N.M. Marković, H.A. Gasteiger, P.N. Ross Jr, X. Jiang, I. Villegas and M.J. Weaver: Electrochim. Acta Vol. 40 (1995), p.91.

[10] V. Climent, E. Herrero and J.M. Feliu: Electrochim. Acta Vol. 44 (1988), p.1403.

[11] A.V. Tripković, K. Dj. Popović and J.D. Lović: J. Serb. Chem. Soc. Vol. 68 (2003), p.849.

[12] J.D. Lović, A.V. Tripković, S. Lj. Gojković, K. Dj. Popović, D.V. Tripković, P. Olszewski and A. Kowal: J. Electroanal. Chem. Vol. 581 (2005), p.294.

DOI: 10.1016/j.jelechem.2005.05.002

[13] J. Clavilier, R. Faure, R. Guinet and R. Durand: J. Electroanal. Chem. Vol. 107 (1980), p.205.

[14] N.M. Marković, V. Radmilović and P.N. Ross: in E. Savinova, C. Vayenas and A. Wieckowski (Eds. ), Catalysis and Electrocatalysis at Nanoparticle Surfaces (Marcel Dekker, New York 2002).

DOI: 10.1201/9780203912713

[15] P. Stonehart: J. Appl. Electrochem. Vol. 22 (1992), p.995.

[16] K. Kinoshita: J. Electrochem. Soc. Vol. 137 (1990), p.845.

In order to see related information, you need to Login.