Electrochemical Behaviour of a Composite Rh/TiO2 Layer Formed Potentiodynamically on Titanium Surface


Article Preview

Potentiodynamic polarization of a mechanically polished titanium electrode in a diluted solution of Rhodium(III) chloride in 0.1 M perchloric acid was performed, resulting in simultaneous formation of both Rh and TiO2 films. The morphology of obtained Rh/TiO2 composite film followed the morphology of titanium support, as evidenced by SEM technique. This composite surface was examined by cyclic voltammetry in both acidic and alkaline solutions, in the potential region of both hydrogen and oxygen underpotential deposition. The charge related to hydrogen underpotential deposition corresponded to a surface roughness of 43. As a consequence of high surface roughness, the diffusion current of oxygen reduction in an oxygen saturated 0.1 M NaOH solution, measured by voltammetry on rotating disc electrode, was found to be comparable to the current of hydrogen underpotential deposition.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




S. Mentus et al., "Electrochemical Behaviour of a Composite Rh/TiO2 Layer Formed Potentiodynamically on Titanium Surface", Materials Science Forum, Vol. 518, pp. 265-270, 2006

Online since:

July 2006




[1] B.C. Beard and P.N. Ross: J. Electrochem. Soc. Vol. 133 (1986), p.1839.

[2] T.A.F. Lassali, J.F.C. Boodts, S.C. de Castro, R. Landers and S. Trasatti: Electrochim. Acta Vol. 39 (1994), p.95.

[3] L.A. Da Silva, V.A. Alves. M.A.P. Da Silva, S. Trasatti and J.F.C. Boodts: Electrochim. Acta Vol. 41 (1996), p.1279.

[4] K. Tammeveski, T. Tenno, A. Rosental, P. Talonen, L. -S. Johansson and L. Niinistö: J. Electrochem. Soc. Vol. 146 (1999), p.669.

[5] K. Tammeveski, M. Arulepp, T. Teno, C. Ferrater and J. Claret: Electrochim. Acta Vol. 42 (1997), p.2961.

[6] G. Fóti, C. Mousty, K. Novy, Ch. Comninellis and V. Reid: J. Appl. Electrochem. Vol. 30 (2000), p.147.

DOI: 10.1023/a:1003928608596

[7] S.G. Neophytides, S.H. Zafeiratos and M.M. Jaksic: J. Electrochem. Soc. Vol. 150.

[10] (2003), p. E512.

[8] G. Kokkinidis, A. Paapoutsis, D. Stoychev and A. Milchev: J. Electroanal. Chem. Vol. 486 (2000), p.48.

[9] D. Čukman and M. Vuković: J. Electroanal. Chem. Vol. 279 (1990), p.273.

[10] M. Vuković and D. Čukman: J. Electroanal. Chem. Vol. 333 (1992), p.195.

[11] S. Mentus: Electrochim. Acta Vol. 50 (2005), p.3609.

[12] J. Pjescic, S. Mentus and N. Blagojevic: Mater. Coros. Vol. 53 (2002), p.44.

[13] J.F. McAleer and L.M. Peter: Disc. Faraday. Soc. Vol. 70 (1980), p.67.

[14] R.M. Torressi, O.R. Camara and C.P. De Pauli: Electrochim. Acta Vol. 32 (1987), p.1291.

[15] T. Clark and D.C. Johnson: Electroanalysis Vol. 9 (1997), p.273.

[16] B.L.D. Burke and E.J.M. O'Sullivan: J. Electroanal. Chem. Vol. 93 (1978), p.11.

[17] A.S. Gottesfeld: J. Electrochem. Soc. Vol. 127 (1980), p.272.

[18] M.M. Jaksic, B. Johansen and R. Tunold: J. Hydrogen Energy Vol. 19 (1994), p.35.

[19] K. Tanaka and A. Sasahara: in A. Wieckowski (Ed. ) Interfacial Electrochemistry, Theory, Experiment and Applications (M. Dekker, Inc. 1999), Ch. 28, p.493.

[20] S. Thomas, Y-E Sung and A. Wieckowski: Solid-Liquid Electrochemical Interfaces, ACS Symposium Series 656 (ACS, Washington DC 1996).

[21] I. Bakos and S. Szabo: J. Electroanal. Chem. Vol. 547 (2003), p.103.

[22] D.A.J. Rand and R. Woods: J. Electroanal. Chem. Vol. 31 (1971), p.29.

[23] G. Jerkiewcz: in A. Wieckowski (Ed. ), Interfacial Electrochemistry, Theory, Experiment and Applications (M. Dekker, Inc. 1999) Ch. 32, p.559.

[24] M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, London, 1966), p.351.

[25] U.A. Paulus, A. Wokaun, G.E. Scherer, T.J. Schmidt, V. Stamenkovic, N.N. Markovic and P.N. Ross: Electrochim. Acta Vol. 47 (2002), p.3787.

[26] C.H. Hamann, A. Hamnett and W. Vielstich: Electrochemistry (Wiley-WCH 1998), p.226.

Fetching data from Crossref.
This may take some time to load.