Comparative Analysis of λ≈9µm GaAs/AlGaAs Quantum Cascade Lasers with Different Injector Doping


Article Preview

An experimental and theoretical comparative analysis of the output characteristics of λ ≈ 9m GaAs/Al0.45Ga0.55As quantum cascade lasers based on single and double phonon resonance depopulation mechanisms were presented. The layer structures were grown with solid source molecular beam epitaxy and consist of 48 or 36 active stages embedded in a symmetrical plasmon enhanced waveguide. From the wafers, ridge waveguide lasers were fabricated by optical lithography and dry etching. The theoretical model is based on a fully non-equilibrium Schrödinger- Poisson self-consistent analysis of the coupled scattering rate and single-temperature energy balance equations, taking all relevant electron-LO phonon, electron-electron and electron-ionised impurity scattering processes into account. Single phonon resonance devices exhibit clear current saturation, simultaneously with a decrease of the optical power. In the moderate doping regime, a quasi-linear dependence of both the threshold and saturation current densities on injector doping, were measured, in a very good agreement with theoretical predictions. Double phonon resonance lasers exhibit ‘saturation’ mechanism evident from their decrease in optical power, but without pronounced current saturation. Previously reported saturation of the ‘maximal’ current under higher injector doping in single phonon resonance lasers, is also observed in the double phonon resonance structure for injector sheet doping above 8x1011cm-2.



Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic




D. Indjin et al., "Comparative Analysis of λ≈9µm GaAs/AlGaAs Quantum Cascade Lasers with Different Injector Doping ", Materials Science Forum, Vol. 518, pp. 29-34, 2006

Online since:

July 2006




[1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson and A.Y. Cho: Science Vol. 264 (1994), p.553.

[2] C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist and U. Oesterle: Appl. Phys. Lett Vol. 73 (1998), p.3486.


[3] L.R. Wilson, D.A. Carder, J.W. Cockburn, R.P. Green, D.G. Revin, M.J. Steer, M. Hopkinson, G. Hill and R. Airey: Appl. Phys. Lett. Vol. 81 (2002), p.1378.


[4] G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield and D. Ritchie: Phys. Rev. Lett. Vol. 93 (2004), p.237403.

[5] H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz and C. Sirtori: Appl. Phys. Lett. Vol. 78 (2001), p.3529.

[6] S. Anders, W. Schrenk, E. Gornik and G. Strasser: Appl. Phys. Lett Vol. 80 (2002), p.1864.

[7] D.A. Carder, L.R. Wilson, R.P. Green, J.W. Cockburn, M. Hopkinson, M.J. Steer, R. Airey and G. Hill: Appl. Phys. Lett. Vol. 82 (2003), p.3409.

[8] C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti and A. Muller: Appl. Phys. Lett. Vol. 83 (2003), p.4698.


[9] R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie and F. Rossi: Nature Vol. 417 (2002), p.156.


[10] H.E. Beere, J.C. Fowler, J. Alton, E.H. Linfield, D.A. Ritchie, R. Köhler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist and S. Barbieri: J. Cryst. Growth Vol. 278 (2005), p.756.


[11] G. Scalari, N. Hoyler, M. Giovannini and J. Faist: Appl. Phys. Lett. Vol. 86 (2005), p.181101.

[12] B.S. Williams, S. Kumar, Q. Hu and J.L. Reno: Optics Express Vol. 13 (2005), p.3331.

[13] S. Barbieri, C. Sirtori, H. Page, M. Stellmacher and J. Nagle: Appl. Phys. Lett. Vol. 78 (2001), p.282.

[14] V. Ortiz, C. Becker, H. Page and C. Sirtori: J. Cryst. Growth Vol. 251 (2003), p.701.

[15] C. Sirtori, H. Page, C. Becker and V. Ortiz: IEEE J. of Quantum Electron. Vol. 38 (2002), p.547.

[16] M. Giehler, R. Hey, H. Kostial, S. Cronenberg, T. Ohtsuka, L. Schrottke and H.T. Grahn: Appl. Phys. Lett. Vol. 82 (2003), p.671.


[17] S. -C. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. Wacker and H.T. Grahn: Semicond. Sci. Technol. Vol. 19 (2004), p. S45.

[18] S. Höfling, R. Kallweit, J. Seufert, J. Koeth, J.P. Reithmaier and A. Forchel: J. Cryst. Growth Vol. 278 (2005), p.775.

[19] V.D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E.H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H.E. Beere and D.A. Ritchie: Appl. Phys. Lett. Vol. 81 (2005), p.211117.


[20] A. Mirčetić, D. Indjin, Z. Ikonić, P. Harrison, V. Milanović and R.W. Kelsall: J. Appl. Phys Vol. 97 (2005), p.084506.


[21] D. Indjin, A. Mirčetić, P. Harrison, R.W. Kelsall, Z. Ikonić, V.D. Jovanović, V. Milanović, M. Giehler, R. Hey and H.T. Grahn: AIP, Conf. Proc. Vol. 772 (2005), p.1565.

[22] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior: Science Vol. 301 (2002), p.295.

[23] A. Straub, T.S. Mosely, C. Gmachl, R. Colombelli, M. Troccoli, F. Capasso, D.L. Sivco and A.Y. Cho: Appl. Phys. Lett. Vol. 80 (2002), p.2845.


[24] J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi: Appl. Phys. Lett. Vol. 82 (2003), p.3397.

[25] D. Indjin, Z. Ikonić, V.D. Jovanović, N. Vukmirović, P. Harrison, and R.W. Kelsall, Semicond. Science. Technol. Vol. 20 (2005), p. S237.

[26] D. Indjin, P. Harrison, R.W. Kelsall and Z. Ikonić: Appl. Phys. Lett. Vol. 81 (2002), p.400.